Contact activation of the plasma coagulation cascade. III. Biophysical aspects of thrombin-binding anticoagulants

Erwin A. Vogler, James G. Nadeau, J. C. Graper

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

A biophysical model linking fibrin polymerization kinetics (following release from a thrombin-fibrinogen complex), coagulation time, and competitive inhibition of thrombin illustrates the utility of thrombin- binding ligands as anticoagulants in blood collection applications. The resulting mathematical relationship connecting fibrinogen, ligand, and thrombin concentrations was tested against experimentally observed anticoagulation of whole, platelet-poor porcine plasma induced by short, single-stranded DNA oligonucleotides originally found to bind thrombin by screening combinatorial libraries. The thrombin-fibrinogen dissociation constant K(s) served as the single adjustable parameter in a least-squares fitting of the model to experimental anticoagulation data. Best-fit K(s) values corroborated μM values measured in plasma-free systems, and application of the model to a ligand challenge to the intrinsic pathway of plasma coagulation corroborated nM endogenous thrombin concentrations measured in porcine blood activated by endotoxin insult in vivo. The model fit to data suggests that only about 20% conversion of blood fibrinogen to fibrin is required to coagulate (gel) porcine plasma. This prediction is consistent with the common clinical laboratory observation of latent fibrin formation in 'serum' separated from blood before fibrinogen is fully converted to fibrin. It was concluded that the thrombin-binding anticoagulation model was a reasonable simulation of the situation in which an initial bolus of either exogenous or endogenous thrombin is rapidly partitioned between fibrinogen-bound and ligand-bound forms with little or no additional free thrombin created over time.

Original languageEnglish (US)
Pages (from-to)92-103
Number of pages12
JournalJournal of Biomedical Materials Research
Volume40
Issue number1
DOIs
StatePublished - Apr 1998

Fingerprint

Coagulation
Thrombin
Anticoagulants
Chemical activation
Plasmas
Blood
Ligands
Fibrinogen
Fibrin
Clinical laboratories
Oligonucleotides
Platelets
Screening
DNA
Gels
Polymerization
Kinetics
Single-Stranded DNA
Endotoxins

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering
  • Biomaterials

Cite this

@article{240da1de9de045d5b192dbf76b106757,
title = "Contact activation of the plasma coagulation cascade. III. Biophysical aspects of thrombin-binding anticoagulants",
abstract = "A biophysical model linking fibrin polymerization kinetics (following release from a thrombin-fibrinogen complex), coagulation time, and competitive inhibition of thrombin illustrates the utility of thrombin- binding ligands as anticoagulants in blood collection applications. The resulting mathematical relationship connecting fibrinogen, ligand, and thrombin concentrations was tested against experimentally observed anticoagulation of whole, platelet-poor porcine plasma induced by short, single-stranded DNA oligonucleotides originally found to bind thrombin by screening combinatorial libraries. The thrombin-fibrinogen dissociation constant K(s) served as the single adjustable parameter in a least-squares fitting of the model to experimental anticoagulation data. Best-fit K(s) values corroborated μM values measured in plasma-free systems, and application of the model to a ligand challenge to the intrinsic pathway of plasma coagulation corroborated nM endogenous thrombin concentrations measured in porcine blood activated by endotoxin insult in vivo. The model fit to data suggests that only about 20{\%} conversion of blood fibrinogen to fibrin is required to coagulate (gel) porcine plasma. This prediction is consistent with the common clinical laboratory observation of latent fibrin formation in 'serum' separated from blood before fibrinogen is fully converted to fibrin. It was concluded that the thrombin-binding anticoagulation model was a reasonable simulation of the situation in which an initial bolus of either exogenous or endogenous thrombin is rapidly partitioned between fibrinogen-bound and ligand-bound forms with little or no additional free thrombin created over time.",
author = "Vogler, {Erwin A.} and Nadeau, {James G.} and Graper, {J. C.}",
year = "1998",
month = "4",
doi = "10.1002/(SICI)1097-4636(199804)40:1<92::AID-JBM11>3.0.CO;2-M",
language = "English (US)",
volume = "40",
pages = "92--103",
journal = "Journal of Biomedical Materials Research - Part A",
issn = "1549-3296",
publisher = "John Wiley and Sons Inc.",
number = "1",

}

Contact activation of the plasma coagulation cascade. III. Biophysical aspects of thrombin-binding anticoagulants. / Vogler, Erwin A.; Nadeau, James G.; Graper, J. C.

In: Journal of Biomedical Materials Research, Vol. 40, No. 1, 04.1998, p. 92-103.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Contact activation of the plasma coagulation cascade. III. Biophysical aspects of thrombin-binding anticoagulants

AU - Vogler, Erwin A.

AU - Nadeau, James G.

AU - Graper, J. C.

PY - 1998/4

Y1 - 1998/4

N2 - A biophysical model linking fibrin polymerization kinetics (following release from a thrombin-fibrinogen complex), coagulation time, and competitive inhibition of thrombin illustrates the utility of thrombin- binding ligands as anticoagulants in blood collection applications. The resulting mathematical relationship connecting fibrinogen, ligand, and thrombin concentrations was tested against experimentally observed anticoagulation of whole, platelet-poor porcine plasma induced by short, single-stranded DNA oligonucleotides originally found to bind thrombin by screening combinatorial libraries. The thrombin-fibrinogen dissociation constant K(s) served as the single adjustable parameter in a least-squares fitting of the model to experimental anticoagulation data. Best-fit K(s) values corroborated μM values measured in plasma-free systems, and application of the model to a ligand challenge to the intrinsic pathway of plasma coagulation corroborated nM endogenous thrombin concentrations measured in porcine blood activated by endotoxin insult in vivo. The model fit to data suggests that only about 20% conversion of blood fibrinogen to fibrin is required to coagulate (gel) porcine plasma. This prediction is consistent with the common clinical laboratory observation of latent fibrin formation in 'serum' separated from blood before fibrinogen is fully converted to fibrin. It was concluded that the thrombin-binding anticoagulation model was a reasonable simulation of the situation in which an initial bolus of either exogenous or endogenous thrombin is rapidly partitioned between fibrinogen-bound and ligand-bound forms with little or no additional free thrombin created over time.

AB - A biophysical model linking fibrin polymerization kinetics (following release from a thrombin-fibrinogen complex), coagulation time, and competitive inhibition of thrombin illustrates the utility of thrombin- binding ligands as anticoagulants in blood collection applications. The resulting mathematical relationship connecting fibrinogen, ligand, and thrombin concentrations was tested against experimentally observed anticoagulation of whole, platelet-poor porcine plasma induced by short, single-stranded DNA oligonucleotides originally found to bind thrombin by screening combinatorial libraries. The thrombin-fibrinogen dissociation constant K(s) served as the single adjustable parameter in a least-squares fitting of the model to experimental anticoagulation data. Best-fit K(s) values corroborated μM values measured in plasma-free systems, and application of the model to a ligand challenge to the intrinsic pathway of plasma coagulation corroborated nM endogenous thrombin concentrations measured in porcine blood activated by endotoxin insult in vivo. The model fit to data suggests that only about 20% conversion of blood fibrinogen to fibrin is required to coagulate (gel) porcine plasma. This prediction is consistent with the common clinical laboratory observation of latent fibrin formation in 'serum' separated from blood before fibrinogen is fully converted to fibrin. It was concluded that the thrombin-binding anticoagulation model was a reasonable simulation of the situation in which an initial bolus of either exogenous or endogenous thrombin is rapidly partitioned between fibrinogen-bound and ligand-bound forms with little or no additional free thrombin created over time.

UR - http://www.scopus.com/inward/record.url?scp=0032053413&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032053413&partnerID=8YFLogxK

U2 - 10.1002/(SICI)1097-4636(199804)40:1<92::AID-JBM11>3.0.CO;2-M

DO - 10.1002/(SICI)1097-4636(199804)40:1<92::AID-JBM11>3.0.CO;2-M

M3 - Article

C2 - 9511103

AN - SCOPUS:0032053413

VL - 40

SP - 92

EP - 103

JO - Journal of Biomedical Materials Research - Part A

JF - Journal of Biomedical Materials Research - Part A

SN - 1549-3296

IS - 1

ER -