Continental-scale streamflow modeling of basins with reservoirs: Towards a coherent deep-learning-based strategy

Wenyu Ouyang, Kathryn Lawson, Dapeng Feng, Lei Ye, Chi Zhang, Chaopeng Shen

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

A large fraction of major waterways have dams influencing streamflow, which must be accounted for in large-scale hydrologic modeling. However, daily streamflow prediction for basins with dams is challenging for various modeling approaches, especially at large scales. Here we examined which types of dammed basins could be well represented by long short-term memory (LSTM) models using readily-available information, and delineated the remaining challenges. We analyzed data from 3557 basins (83% dammed) over the contiguous United States and noted strong impacts of reservoir purposes, degree of regulation (dor), and diversion on streamflow modeling. While a model trained on a widely-used reference-basin dataset performed poorly for non-reference basins, the model trained on the whole dataset presented a median Nash-Sutcliffe efficiency coefficient (NSE) of 0.74. The zero-dor, small-dor (with storage of approximately a month of average streamflow or less), and large-dor basins were found to have distinct behaviors, so migrating models between categories yielded catastrophic results, which means we must not treat small-dor basins as reference ones. However, training with pooled data from different sets yielded optimal median NSEs of 0.72, 0.79, and 0.64 for these respective groups, noticeably stronger than existing models. These results support a coherent modeling strategy where smaller dams (storing about a month of average streamflow or less) are modeled implicitly as part of basin rainfall-runoff processes; then, large-dor reservoirs of certain types can be represented explicitly. However, dammed basins must be present in the training dataset. Future work should examine separate modeling of large reservoirs for fire protection and irrigation, hydroelectric power generation, and flood control.

Original languageEnglish (US)
Article number126455
JournalJournal of Hydrology
Volume599
DOIs
StatePublished - Aug 2021

All Science Journal Classification (ASJC) codes

  • Water Science and Technology

Cite this