Continuum signalized junction model for dynamic traffic networks: Offset, spillback, and multiple signal phases

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

This paper extends the continuum signalized intersection model exhaustively studied in Han et al. (2014) to more accurately account for three realistic complications: signal offsets, queue spillbacks, and complex signal phasing schemes. The model extensions are derived theoretically based on signal cycle, green split, and offset, and are shown to approximate well traffic operations at signalized intersections treated using the traditional (and more realistic) on-and-off model. We propose a generalized continuum signal model, which explicitly handles complex vehicle spillback patterns on signalized networks with provable error estimates. Under mild conditions, the errors are small and bounded by fixed values that do not grow with time. Overall, this represents a significant improvement over the original continuum model, which had errors that grew quickly with time in the presence of any queue spillbacks and for which errors were not explicitly derived for different offset cases. Thus, the new model is able to more accurately approximate traffic dynamics in large networks with multiple signals under more realistic conditions. We also qualitatively describe how this new model can be applied to several realistic intersection configurations that might be encountered in typical urban networks. These include intersections with multiple entry and exit links, complex signal phasing, all-red times, and the presence of dedicated turning lanes. Numerical tests of the models show remarkable consistency with the on-and-off model, as expected from the theory, with the added benefit of significant computational savings and higher signal control resolution when using the continuum model.

Original languageEnglish (US)
Pages (from-to)213-239
Number of pages27
JournalTransportation Research Part B: Methodological
Volume77
DOIs
StatePublished - Jul 1 2015

Fingerprint

traffic
savings
time
Values

All Science Journal Classification (ASJC) codes

  • Transportation
  • Management Science and Operations Research

Cite this

@article{43984f6057d74731aba79c281182487a,
title = "Continuum signalized junction model for dynamic traffic networks: Offset, spillback, and multiple signal phases",
abstract = "This paper extends the continuum signalized intersection model exhaustively studied in Han et al. (2014) to more accurately account for three realistic complications: signal offsets, queue spillbacks, and complex signal phasing schemes. The model extensions are derived theoretically based on signal cycle, green split, and offset, and are shown to approximate well traffic operations at signalized intersections treated using the traditional (and more realistic) on-and-off model. We propose a generalized continuum signal model, which explicitly handles complex vehicle spillback patterns on signalized networks with provable error estimates. Under mild conditions, the errors are small and bounded by fixed values that do not grow with time. Overall, this represents a significant improvement over the original continuum model, which had errors that grew quickly with time in the presence of any queue spillbacks and for which errors were not explicitly derived for different offset cases. Thus, the new model is able to more accurately approximate traffic dynamics in large networks with multiple signals under more realistic conditions. We also qualitatively describe how this new model can be applied to several realistic intersection configurations that might be encountered in typical urban networks. These include intersections with multiple entry and exit links, complex signal phasing, all-red times, and the presence of dedicated turning lanes. Numerical tests of the models show remarkable consistency with the on-and-off model, as expected from the theory, with the added benefit of significant computational savings and higher signal control resolution when using the continuum model.",
author = "Ke Han and Gayah, {Vikash Varun}",
year = "2015",
month = "7",
day = "1",
doi = "10.1016/j.trb.2015.03.005",
language = "English (US)",
volume = "77",
pages = "213--239",
journal = "Transportation Research, Series B: Methodological",
issn = "0191-2615",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Continuum signalized junction model for dynamic traffic networks

T2 - Offset, spillback, and multiple signal phases

AU - Han, Ke

AU - Gayah, Vikash Varun

PY - 2015/7/1

Y1 - 2015/7/1

N2 - This paper extends the continuum signalized intersection model exhaustively studied in Han et al. (2014) to more accurately account for three realistic complications: signal offsets, queue spillbacks, and complex signal phasing schemes. The model extensions are derived theoretically based on signal cycle, green split, and offset, and are shown to approximate well traffic operations at signalized intersections treated using the traditional (and more realistic) on-and-off model. We propose a generalized continuum signal model, which explicitly handles complex vehicle spillback patterns on signalized networks with provable error estimates. Under mild conditions, the errors are small and bounded by fixed values that do not grow with time. Overall, this represents a significant improvement over the original continuum model, which had errors that grew quickly with time in the presence of any queue spillbacks and for which errors were not explicitly derived for different offset cases. Thus, the new model is able to more accurately approximate traffic dynamics in large networks with multiple signals under more realistic conditions. We also qualitatively describe how this new model can be applied to several realistic intersection configurations that might be encountered in typical urban networks. These include intersections with multiple entry and exit links, complex signal phasing, all-red times, and the presence of dedicated turning lanes. Numerical tests of the models show remarkable consistency with the on-and-off model, as expected from the theory, with the added benefit of significant computational savings and higher signal control resolution when using the continuum model.

AB - This paper extends the continuum signalized intersection model exhaustively studied in Han et al. (2014) to more accurately account for three realistic complications: signal offsets, queue spillbacks, and complex signal phasing schemes. The model extensions are derived theoretically based on signal cycle, green split, and offset, and are shown to approximate well traffic operations at signalized intersections treated using the traditional (and more realistic) on-and-off model. We propose a generalized continuum signal model, which explicitly handles complex vehicle spillback patterns on signalized networks with provable error estimates. Under mild conditions, the errors are small and bounded by fixed values that do not grow with time. Overall, this represents a significant improvement over the original continuum model, which had errors that grew quickly with time in the presence of any queue spillbacks and for which errors were not explicitly derived for different offset cases. Thus, the new model is able to more accurately approximate traffic dynamics in large networks with multiple signals under more realistic conditions. We also qualitatively describe how this new model can be applied to several realistic intersection configurations that might be encountered in typical urban networks. These include intersections with multiple entry and exit links, complex signal phasing, all-red times, and the presence of dedicated turning lanes. Numerical tests of the models show remarkable consistency with the on-and-off model, as expected from the theory, with the added benefit of significant computational savings and higher signal control resolution when using the continuum model.

UR - http://www.scopus.com/inward/record.url?scp=84941650474&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84941650474&partnerID=8YFLogxK

U2 - 10.1016/j.trb.2015.03.005

DO - 10.1016/j.trb.2015.03.005

M3 - Article

AN - SCOPUS:84941650474

VL - 77

SP - 213

EP - 239

JO - Transportation Research, Series B: Methodological

JF - Transportation Research, Series B: Methodological

SN - 0191-2615

ER -