Control of velocity and position in single joint movements

Pratik K. Mutha, Robert L. Sainburg

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Previous research on single joint movements has lead to the development of models of control that propose that movement speed and distance are controlled through an initial pulsatile signal that can be modified in both amplitude and duration. However, the manner in which the amplitude and duration are modulated during the control of movement remains controversial. We now report two studies that were designed to differentiate the mechanisms used to control movement speed from those employed to control final position accuracy. In our first study, participants move at a series of speeds to a single spatial target. In this task, acceleration duration (pulse-width) varied substantially across speeds, and was negatively correlated with peak acceleration (pulse-height). In a second experiment, we removed the spatial target, but required movements at the three speeds similar to those used in the first study. In this task, acceleration amplitude varied extensively across the speed targets, while acceleration duration remained constant. Taken together, our current findings demonstrate that pulse-width measures can be modulated independently from pulse-height measures, and that a positive correlation between such measures is not obligatory, even when sampled across a range of movement speeds. In addition, our findings suggest that pulse-height modulation plays a primary role in controlling movement speed and specifying target distance, whereas pulse-width mechanisms are employed to correct errors in pulse-height control, as required to achieve spatial precision in final limb position.

Original languageEnglish (US)
Pages (from-to)808-823
Number of pages16
JournalHuman Movement Science
Volume26
Issue number6
DOIs
StatePublished - Dec 2007

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Orthopedics and Sports Medicine
  • Experimental and Cognitive Psychology

Fingerprint Dive into the research topics of 'Control of velocity and position in single joint movements'. Together they form a unique fingerprint.

Cite this