TY - JOUR
T1 - Corrected effective-medium study of metal-surface relaxation
AU - Sinnott, Susan B.
AU - Stave, Mark S.
AU - Raeker, Todd J.
AU - Depristo, Andrew E.
PY - 1991
Y1 - 1991
N2 - We have studied the relaxation of some metal surfaces using a corrected effective-medium (CEM) theory. CEM is a non-self-consistent, density-functional technique. The interaction energy is calculated as a sum of three components: the embedding energy of an atom in jellium, the interatomic Coulomb energy, and the kinetic exchange-correlation energy. A theoretical procedure has been developed to determine the embedding energies via linear-muffin-tin-orbital calculations. This refinement of the theory is tested for surface energies and structures of some relaxed Al, Ni, Cu, Rh, Pd, and Ag surfaces. Comparisons are made to the embedded-atom method, the effective-medium technique, and a simpler version of CEM that is used in molecular-dynamics and Monte Carlo simulations. We present an in-depth analysis of the results, and discuss the physical basis of surface relaxation within CEM. Finally, we address the limitations inherent in calculations of metal-surface relaxation.
AB - We have studied the relaxation of some metal surfaces using a corrected effective-medium (CEM) theory. CEM is a non-self-consistent, density-functional technique. The interaction energy is calculated as a sum of three components: the embedding energy of an atom in jellium, the interatomic Coulomb energy, and the kinetic exchange-correlation energy. A theoretical procedure has been developed to determine the embedding energies via linear-muffin-tin-orbital calculations. This refinement of the theory is tested for surface energies and structures of some relaxed Al, Ni, Cu, Rh, Pd, and Ag surfaces. Comparisons are made to the embedded-atom method, the effective-medium technique, and a simpler version of CEM that is used in molecular-dynamics and Monte Carlo simulations. We present an in-depth analysis of the results, and discuss the physical basis of surface relaxation within CEM. Finally, we address the limitations inherent in calculations of metal-surface relaxation.
UR - http://www.scopus.com/inward/record.url?scp=0000052327&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000052327&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.44.8927
DO - 10.1103/PhysRevB.44.8927
M3 - Article
AN - SCOPUS:0000052327
SN - 0163-1829
VL - 44
SP - 8927
EP - 8941
JO - Physical Review B
JF - Physical Review B
IS - 16
ER -