Correction to: Structure of attractors for boundary maps associated to Fuchsian groups (Geometriae Dedicata, (2017), 191, 1, (171-198), 10.1007/s10711-017-0251-z)

Svetlana Katok, Ilie Ugarcovici

Research output: Contribution to journalComment/debate

Abstract

The paper [2] studies the dynamics of a class of circle maps and their two-dimensional natural extensions built using the generators of a given cocompact and torsion-free Fuchsian group Γ.

Original languageEnglish (US)
Pages (from-to)189-191
Number of pages3
JournalGeometriae Dedicata
Volume198
Issue number1
DOIs
StatePublished - Feb 2 2019

Fingerprint

Circle Map
Fuchsian Group
Torsion-free Group
Natural Extension
Attractor
Generator
Class

All Science Journal Classification (ASJC) codes

  • Geometry and Topology

Cite this

@article{49df71d6da9948d8a267f50debcf1bd5,
title = "Correction to: Structure of attractors for boundary maps associated to Fuchsian groups (Geometriae Dedicata, (2017), 191, 1, (171-198), 10.1007/s10711-017-0251-z)",
abstract = "The paper [2] studies the dynamics of a class of circle maps and their two-dimensional natural extensions built using the generators of a given cocompact and torsion-free Fuchsian group Γ.",
author = "Svetlana Katok and Ilie Ugarcovici",
year = "2019",
month = "2",
day = "2",
doi = "10.1007/s10711-018-0336-3",
language = "English (US)",
volume = "198",
pages = "189--191",
journal = "Geometriae Dedicata",
issn = "0046-5755",
publisher = "Springer Netherlands",
number = "1",

}

TY - JOUR

T1 - Correction to

T2 - Structure of attractors for boundary maps associated to Fuchsian groups (Geometriae Dedicata, (2017), 191, 1, (171-198), 10.1007/s10711-017-0251-z)

AU - Katok, Svetlana

AU - Ugarcovici, Ilie

PY - 2019/2/2

Y1 - 2019/2/2

N2 - The paper [2] studies the dynamics of a class of circle maps and their two-dimensional natural extensions built using the generators of a given cocompact and torsion-free Fuchsian group Γ.

AB - The paper [2] studies the dynamics of a class of circle maps and their two-dimensional natural extensions built using the generators of a given cocompact and torsion-free Fuchsian group Γ.

UR - http://www.scopus.com/inward/record.url?scp=85063605714&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063605714&partnerID=8YFLogxK

U2 - 10.1007/s10711-018-0336-3

DO - 10.1007/s10711-018-0336-3

M3 - Comment/debate

AN - SCOPUS:85063605714

VL - 198

SP - 189

EP - 191

JO - Geometriae Dedicata

JF - Geometriae Dedicata

SN - 0046-5755

IS - 1

ER -