Cost modeling and depreciation for reused powder feedstocks in powder bed fusion additive manufacturing

Michael Barclift, Sanjay Joshi, Timothy Simpson, Corey Dickman

Research output: Contribution to conferencePaperpeer-review

10 Scopus citations

Abstract

Cost modeling for Powder Fusion (PBF) has traditionally treated the material feedstock as a fixed cost. Given that a built-up geometry in PBF must be in a bed filled with surrounding powder, the material feedstock is susceptible to satellites, chemical contamination, and dissimilar properties with each subsequent reuse. In this paper, we extend an existing PBF cost model and propose a new financial depreciation model for reused metal powders. Using Sum-of-the-Years Digits depreciation, powder feedstock is valued as a function of build cycles endured by the material feedstock. A case study is presented on two example parts in Direct Metal Laser Sintering (DMLS). Results show that cost models using a fixed material cost can undervalue build jobs with a high value virgin powder by as much as 3-11% or 13-75% depending on the material and its maximum build cycles in PBF.

Original languageEnglish (US)
Pages2007-2028
Number of pages22
StatePublished - Jan 1 2016
Event27th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2016 - Austin, United States
Duration: Aug 8 2016Aug 10 2016

Conference

Conference27th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2016
CountryUnited States
CityAustin
Period8/8/168/10/16

All Science Journal Classification (ASJC) codes

  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Cost modeling and depreciation for reused powder feedstocks in powder bed fusion additive manufacturing'. Together they form a unique fingerprint.

Cite this