Costs and benefits of fighting infection in locusts

Shea N. Gardner, Matthew Brian Thomas

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Locusts and grasshoppers are truly cosmopolitan pests. In an effort to reduce the environmental side-effects of current chemical control practices, several programmes around the world are developing biopesticides, based on fungal entomopathogens, for locust and grasshopper control. Unfortunately, these biocontrol products have achieved mixed success. One of the principal reasons is that locusts are active behavioural thermoregulators, enabling them, under certain environmental conditions, to elevate their body temperatures to levels where fungal growth is suppressed. Here we develop a dynamic behavioural model to predict how locust thermoregulatory behaviour influences disease development. We use the model to explore what the overall consequences of infection might be (i.e. the net effect of disease capturing elements of both pathogen development and host defence) under different conditions in terms of locust mortality, fecundity and crop damage. We modelled two empirical fungal entomopathogens, Metarhizium anisopliae var. acridum and Beauveria bassiana, together with two hypothetical pathogens representing a temperature generalist and a temperature specialist. The model leads to predictions that the effects of a fungal biocontrol agent are strongly mediated by environmental temperature and host behaviour. The positive control effects are manifested through direct mortality and also sub-lethal effects on feeding and fecundity that result from modifications in behaviour associated with host defence and optimization of locust fitness. M. anisopliae var. acridum is predicted to provide the best control of locusts and the specialist fungus to provide the worst. Under hotter conditions, B. bassiana is predicted to provide substantially worse biocontrol than the other fungal strains. These predictions match well with empirical data. In addition, the model reveals the possibility for locusts to balance the costs of host defence through selective expression of behavioural fever in response to individual fungal diseases. We conclude that models like this one may facilitate prospective evaluation of biocontrol and advance our understanding of the role of behaviour and thermal ecology in insect-pathogen interactions.

Original languageEnglish (US)
Pages (from-to)109-131
Number of pages23
JournalEvolutionary Ecology Research
Volume4
Issue number1
StatePublished - Jan 1 2002

Fingerprint

locust
locusts
fighting
cost
infection
entomopathogens
biological control
pathogen
grasshopper
Beauveria bassiana
grasshoppers
fecundity
biopesticide
fungal disease
crop damage
behavior modification
mortality
biocontrol agent
biopesticides
chemical control

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics

Cite this

@article{39a5d7419256454fa723ba444873486b,
title = "Costs and benefits of fighting infection in locusts",
abstract = "Locusts and grasshoppers are truly cosmopolitan pests. In an effort to reduce the environmental side-effects of current chemical control practices, several programmes around the world are developing biopesticides, based on fungal entomopathogens, for locust and grasshopper control. Unfortunately, these biocontrol products have achieved mixed success. One of the principal reasons is that locusts are active behavioural thermoregulators, enabling them, under certain environmental conditions, to elevate their body temperatures to levels where fungal growth is suppressed. Here we develop a dynamic behavioural model to predict how locust thermoregulatory behaviour influences disease development. We use the model to explore what the overall consequences of infection might be (i.e. the net effect of disease capturing elements of both pathogen development and host defence) under different conditions in terms of locust mortality, fecundity and crop damage. We modelled two empirical fungal entomopathogens, Metarhizium anisopliae var. acridum and Beauveria bassiana, together with two hypothetical pathogens representing a temperature generalist and a temperature specialist. The model leads to predictions that the effects of a fungal biocontrol agent are strongly mediated by environmental temperature and host behaviour. The positive control effects are manifested through direct mortality and also sub-lethal effects on feeding and fecundity that result from modifications in behaviour associated with host defence and optimization of locust fitness. M. anisopliae var. acridum is predicted to provide the best control of locusts and the specialist fungus to provide the worst. Under hotter conditions, B. bassiana is predicted to provide substantially worse biocontrol than the other fungal strains. These predictions match well with empirical data. In addition, the model reveals the possibility for locusts to balance the costs of host defence through selective expression of behavioural fever in response to individual fungal diseases. We conclude that models like this one may facilitate prospective evaluation of biocontrol and advance our understanding of the role of behaviour and thermal ecology in insect-pathogen interactions.",
author = "Gardner, {Shea N.} and Thomas, {Matthew Brian}",
year = "2002",
month = "1",
day = "1",
language = "English (US)",
volume = "4",
pages = "109--131",
journal = "Evolutionary Ecology Research",
issn = "1522-0613",
publisher = "Evolutionary Ecology Research",
number = "1",

}

Costs and benefits of fighting infection in locusts. / Gardner, Shea N.; Thomas, Matthew Brian.

In: Evolutionary Ecology Research, Vol. 4, No. 1, 01.01.2002, p. 109-131.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Costs and benefits of fighting infection in locusts

AU - Gardner, Shea N.

AU - Thomas, Matthew Brian

PY - 2002/1/1

Y1 - 2002/1/1

N2 - Locusts and grasshoppers are truly cosmopolitan pests. In an effort to reduce the environmental side-effects of current chemical control practices, several programmes around the world are developing biopesticides, based on fungal entomopathogens, for locust and grasshopper control. Unfortunately, these biocontrol products have achieved mixed success. One of the principal reasons is that locusts are active behavioural thermoregulators, enabling them, under certain environmental conditions, to elevate their body temperatures to levels where fungal growth is suppressed. Here we develop a dynamic behavioural model to predict how locust thermoregulatory behaviour influences disease development. We use the model to explore what the overall consequences of infection might be (i.e. the net effect of disease capturing elements of both pathogen development and host defence) under different conditions in terms of locust mortality, fecundity and crop damage. We modelled two empirical fungal entomopathogens, Metarhizium anisopliae var. acridum and Beauveria bassiana, together with two hypothetical pathogens representing a temperature generalist and a temperature specialist. The model leads to predictions that the effects of a fungal biocontrol agent are strongly mediated by environmental temperature and host behaviour. The positive control effects are manifested through direct mortality and also sub-lethal effects on feeding and fecundity that result from modifications in behaviour associated with host defence and optimization of locust fitness. M. anisopliae var. acridum is predicted to provide the best control of locusts and the specialist fungus to provide the worst. Under hotter conditions, B. bassiana is predicted to provide substantially worse biocontrol than the other fungal strains. These predictions match well with empirical data. In addition, the model reveals the possibility for locusts to balance the costs of host defence through selective expression of behavioural fever in response to individual fungal diseases. We conclude that models like this one may facilitate prospective evaluation of biocontrol and advance our understanding of the role of behaviour and thermal ecology in insect-pathogen interactions.

AB - Locusts and grasshoppers are truly cosmopolitan pests. In an effort to reduce the environmental side-effects of current chemical control practices, several programmes around the world are developing biopesticides, based on fungal entomopathogens, for locust and grasshopper control. Unfortunately, these biocontrol products have achieved mixed success. One of the principal reasons is that locusts are active behavioural thermoregulators, enabling them, under certain environmental conditions, to elevate their body temperatures to levels where fungal growth is suppressed. Here we develop a dynamic behavioural model to predict how locust thermoregulatory behaviour influences disease development. We use the model to explore what the overall consequences of infection might be (i.e. the net effect of disease capturing elements of both pathogen development and host defence) under different conditions in terms of locust mortality, fecundity and crop damage. We modelled two empirical fungal entomopathogens, Metarhizium anisopliae var. acridum and Beauveria bassiana, together with two hypothetical pathogens representing a temperature generalist and a temperature specialist. The model leads to predictions that the effects of a fungal biocontrol agent are strongly mediated by environmental temperature and host behaviour. The positive control effects are manifested through direct mortality and also sub-lethal effects on feeding and fecundity that result from modifications in behaviour associated with host defence and optimization of locust fitness. M. anisopliae var. acridum is predicted to provide the best control of locusts and the specialist fungus to provide the worst. Under hotter conditions, B. bassiana is predicted to provide substantially worse biocontrol than the other fungal strains. These predictions match well with empirical data. In addition, the model reveals the possibility for locusts to balance the costs of host defence through selective expression of behavioural fever in response to individual fungal diseases. We conclude that models like this one may facilitate prospective evaluation of biocontrol and advance our understanding of the role of behaviour and thermal ecology in insect-pathogen interactions.

UR - http://www.scopus.com/inward/record.url?scp=0013088080&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0013088080&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0013088080

VL - 4

SP - 109

EP - 131

JO - Evolutionary Ecology Research

JF - Evolutionary Ecology Research

SN - 1522-0613

IS - 1

ER -