Covariate Information Number for Feature Screening in Ultrahigh-Dimensional Supervised Problems

Research output: Contribution to journalArticlepeer-review


Contemporary high-throughput experimental and surveying techniques give rise to ultrahigh-dimensional supervised problems with sparse signals; that is, a limited number of observations (n), each with a very large number of covariates (Formula presented.), only a small share of which is truly associated with the response. In these settings, major concerns on computational burden, algorithmic stability, and statistical accuracy call for substantially reducing the feature space by eliminating redundant covariates before the use of any sophisticated statistical analysis. Along the lines of Pearson’s correlation coefficient-based sure independence screening and other model- and correlation-based feature screening methods, we propose a model-free procedure called covariate information number-sure independence screening (CIS). CIS uses a marginal utility connected to the notion of the traditional Fisher information, possesses the sure screening property, and is applicable to any type of response (features) with continuous features (response). Simulations and an application to transcriptomic data on rats reveal the comparative strengths of CIS over some popular feature screening methods. Supplementary materials for this article are available online.

Original languageEnglish (US)
Pages (from-to)1516-1529
Number of pages14
JournalJournal of the American Statistical Association
Issue number539
StatePublished - 2022

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Statistics, Probability and Uncertainty


Dive into the research topics of 'Covariate Information Number for Feature Screening in Ultrahigh-Dimensional Supervised Problems'. Together they form a unique fingerprint.

Cite this