Critical Assessment of Metagenome Interpretation - A benchmark of metagenomics software

Alexander Sczyrba, Peter Hofmann, Peter Belmann, David Koslicki, Stefan Janssen, Johannes Dröge, Ivan Gregor, Stephan Majda, Jessika Fiedler, Eik Dahms, Andreas Bremges, Adrian Fritz, Ruben Garrido-Oter, Tue Sparholt Jørgensen, Nicole Shapiro, Philip D. Blood, Alexey Gurevich, Yang Bai, Dmitrij Turaev, Matthew Z. DemaereRayan Chikhi, Niranjan Nagarajan, Christopher Quince, Fernando Meyer, Monika Balvočiutė, Lars Hestbjerg Hansen, Søren J. Sørensen, Burton K.H. Chia, Bertrand Denis, Jeff L. Froula, Zhong Wang, Robert Egan, Dongwan Don Kang, Jeffrey J. Cook, Charles Deltel, Michael Beckstette, Claire Lemaitre, Pierre Peterlongo, Guillaume Rizk, Dominique Lavenier, Yu Wei Wu, Steven W. Singer, Chirag Jain, Marc Strous, Heiner Klingenberg, Peter Meinicke, Michael D. Barton, Thomas Lingner, Hsin Hung Lin, Yu Chieh Liao, Genivaldo Gueiros Z. Silva, Daniel A. Cuevas, Robert A. Edwards, Surya Saha, Vitor C. Piro, Bernhard Y. Renard, Mihai Pop, Hans Peter Klenk, Markus Göker, Nikos C. Kyrpides, Tanja Woyke, Julia A. Vorholt, Paul Schulze-Lefert, Edward M. Rubin, Aaron E. Darling, Thomas Rattei, Alice C. McHardy

    Research output: Contribution to journalArticle

    160 Scopus citations

    Abstract

    Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.

    Original languageEnglish (US)
    Pages (from-to)1063-1071
    Number of pages9
    JournalNature methods
    Volume14
    Issue number11
    DOIs
    StatePublished - Oct 31 2017

    All Science Journal Classification (ASJC) codes

    • Biotechnology
    • Biochemistry
    • Molecular Biology
    • Cell Biology

    Fingerprint Dive into the research topics of 'Critical Assessment of Metagenome Interpretation - A benchmark of metagenomics software'. Together they form a unique fingerprint.

  • Cite this

    Sczyrba, A., Hofmann, P., Belmann, P., Koslicki, D., Janssen, S., Dröge, J., Gregor, I., Majda, S., Fiedler, J., Dahms, E., Bremges, A., Fritz, A., Garrido-Oter, R., Jørgensen, T. S., Shapiro, N., Blood, P. D., Gurevich, A., Bai, Y., Turaev, D., ... McHardy, A. C. (2017). Critical Assessment of Metagenome Interpretation - A benchmark of metagenomics software. Nature methods, 14(11), 1063-1071. https://doi.org/10.1038/nmeth.4458