Cross-linking of the human DNA repair protein O6-alkylguanine DNA alkyltransferase to DNA in the presence of 1,2,3,4-diepoxybutane

Rachel Loeber, Mathur Rajesh, Qingming Fang, Anthony Pegg, Natalia Tretyakova

Research output: Contribution to journalArticle

47 Scopus citations

Abstract

1,2,3,4-Diepoxybutane (DEB) is a key carcinogenic metabolite of the important industrial chemical 1,3-butadiene. DEB is a bifunctional alkylating agent capable of reacting with DNA and proteins. Initial DNA alkylation by DEB produces N7-(2′-hydroxy-3′,4′-epoxybut-1′-yl)-guanine monoadducts, which can react with another nucleophilic site to form cross-linked adducts. A recent report revealed a strong correlation between cellular expression of the DNA repair protein O6-alkylguanine DNA alkyltransferase (AGT) and the cytotoxic and mutagenic activity of DEB, suggesting that DEB induces AGT-DNA cross-links (Valadez, J. G., et al. (2004) Activation of bis-electrophiles to mutagenic conjugates by human O 6-alkylguanine-DNA alkyltransferase. Chem. Res. Toxicol. 17, 972-982). The purpose of our study was to analyze the formation and structures of DEB-induced AGT-DNA conjugates and to identify specific amino acid residues within the protein involved in cross-linking. DNA-protein cross-link formation was detected by SDS-PAGE when 32P-labeled double-stranded oligodeoxynucleotides were exposed to DEB in the presence of either wild-type hAGT or a C145A hAGT mutant. Capillary HPLC-electrospray ionization mass spectrometry (ESI-MS) analysis of hAGT that had been treated with N7-(2′-hydroxy-3′,4′-epoxybut-1′-yl)-deoxyguanosine (dG monoepoxide) revealed the ability of the protein to form either one or two butanediol-dG cross-links, corresponding to mass shifts of +353 and +706 Da, respectively. HPLC-ESI+-MSTMS sequencing of the tryptic peptides obtained from dG monoepoxide-treated protein indicated that the two cross-linking sites were the alkyl acceptor site, Cys145, and a neighboring active site residue, Cys150. The same two amino acid residues of hAGT became covalently cross-linked to DNA following DEB treatment. Modification of Cys145 was further confirmed by HPLC-ESI +-MS/MS analysis of dG monoepoxide-treated synthetic peptide GNPVPILIPCHR which represents the active site tryptic fragment of hAGT (C = Cys145). The replacement of the catalytic cysteine residue with alanine in the C145A hAGT mutant abolished DEB-induced cross-linking at this site, while the formation of conjugates via neighboring Cys150 was retained. The exact chemical structure of the cross-linked lesion was established as 1-(S-cysteinyl)-4-(guan-7-yl)-2,3-butanediol by HPLC-ESI +-MS/MS analysis of the amino acids resulting from the total digestion of modified proteins analyzed in parallel with an authentic standard. AGT-DNA cross-linking is a likely mechanism of DEB-mediated cytotoxicity in cells expressing this important repair protein.

Original languageEnglish (US)
Pages (from-to)645-654
Number of pages10
JournalChemical Research in Toxicology
Volume19
Issue number5
DOIs
Publication statusPublished - May 1 2006

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Toxicology

Cite this