Cryogenic large liquid xenon detector for dark matter searches

D. M. Mei, D. S. Akerib, X. H. Bai, S. Bedikian, E. Bernard, A. Bolozdynya, A. Bradley, S. B. Cahn, C. Camp, Maria Del Carmen Carmona Benitez, D. Carr, J. J. Chapman, K. Clark, T. Classen, T. Coffey, A. Curioni, E. Dahl, S. Dazeley, Luiz de Viveiros, M. DragowskyE. Druszkiewicz, C. H. Faham, S. Fiorucci, R. J. Gaitskell, K. R. Gibson, C. Hall, M. Hanhardt, B. Holbrook, M. Ihm, R. G. Jacobsen, L. Kastens, K. Kazkaz, R. Lander, C. Lee, D. Leonard, K. Lesko, A. Lyashenko, D. C. Malling, R. Mannino, Z. Marquez, D. McKinsey, J. Mock, M. Morii, H. Nelson, J. A. Nokkel, M. Pangilinan, P. Phelps, A. Rodionov, P. Roberts, T. Shutt, W. Skulski, C. J. Sofka, P. Sorensen, J. Spaans, T. Stiegler, R. Svoboda, M. Sweany, J. Thomson, M. Tripathi, J. R. Verbus, N. Walsh, R. Webb, J. T. White, M. Wlasenko, F. L.H. Wolfs, M. Woods, C. Zhang

Research output: Contribution to journalConference article

Abstract

Observation of rotational curve of spiral galaxies shows that a large fraction (∼23%) of the mass density of the universe is unaccounted for. Such a significant percentage of missing dark matter suggests that the universe may consist of new types of elementary particles. A compelling explanation for the new particles is the existence of Weakly Interacting Massive Particles (WIMPs), which are non-baryonic particles characterized by particle physics theories beyond the Standard Model. WIMPs are believed to only interact through the weak force and gravity; hence the interaction cross section with ordinary matter is extremely small. Therefore, experimental techniques that combine low radioactivity, low energy thresholds, efficient discrimination against electronic recoil backgrounds, and scalability to large detector masses can only be performed at a deep underground environment where the interference of cosmic rays is obviated. In this paper, we report a cryogenic large liquid xenon detector for dark matter searches at Sanford Lab (Davis Cavern) in the Homestake Mine, USA. The goal of the large underground xenon (LUX) dual-phase detector is to clearly detect (or exclude) WIMPs with a spin independent cross-section per nucleon of 7 × 10 -46 cm 2 , equivalent to ∼0.5 events/100 kg/month in an inner 100 kg fiducial volume (FV) of a 300 kg LXe detector.

Original languageEnglish (US)
Article number052021
JournalJournal of Physics: Conference Series
Volume400
Issue numberPART 4
DOIs
StatePublished - Jan 1 2012
Event26th International Conference on Low Temperature Physics, LT 2011 - Beijing, China
Duration: Aug 10 2011Aug 17 2011

Fingerprint

weakly interacting massive particles
xenon
cryogenics
dark matter
detectors
liquids
universe
phase detectors
elementary particles
cross sections
spiral galaxies
radioactivity
discrimination
cosmic rays
gravitation
interference
physics
thresholds
curves
electronics

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this

Mei, D. M., Akerib, D. S., Bai, X. H., Bedikian, S., Bernard, E., Bolozdynya, A., ... Zhang, C. (2012). Cryogenic large liquid xenon detector for dark matter searches. Journal of Physics: Conference Series, 400(PART 4), [052021]. https://doi.org/10.1088/1742-6596/400/5/052021
Mei, D. M. ; Akerib, D. S. ; Bai, X. H. ; Bedikian, S. ; Bernard, E. ; Bolozdynya, A. ; Bradley, A. ; Cahn, S. B. ; Camp, C. ; Carmona Benitez, Maria Del Carmen ; Carr, D. ; Chapman, J. J. ; Clark, K. ; Classen, T. ; Coffey, T. ; Curioni, A. ; Dahl, E. ; Dazeley, S. ; de Viveiros, Luiz ; Dragowsky, M. ; Druszkiewicz, E. ; Faham, C. H. ; Fiorucci, S. ; Gaitskell, R. J. ; Gibson, K. R. ; Hall, C. ; Hanhardt, M. ; Holbrook, B. ; Ihm, M. ; Jacobsen, R. G. ; Kastens, L. ; Kazkaz, K. ; Lander, R. ; Lee, C. ; Leonard, D. ; Lesko, K. ; Lyashenko, A. ; Malling, D. C. ; Mannino, R. ; Marquez, Z. ; McKinsey, D. ; Mock, J. ; Morii, M. ; Nelson, H. ; Nokkel, J. A. ; Pangilinan, M. ; Phelps, P. ; Rodionov, A. ; Roberts, P. ; Shutt, T. ; Skulski, W. ; Sofka, C. J. ; Sorensen, P. ; Spaans, J. ; Stiegler, T. ; Svoboda, R. ; Sweany, M. ; Thomson, J. ; Tripathi, M. ; Verbus, J. R. ; Walsh, N. ; Webb, R. ; White, J. T. ; Wlasenko, M. ; Wolfs, F. L.H. ; Woods, M. ; Zhang, C. / Cryogenic large liquid xenon detector for dark matter searches. In: Journal of Physics: Conference Series. 2012 ; Vol. 400, No. PART 4.
@article{2ab7a0efc19941f390d6c2db80c8567f,
title = "Cryogenic large liquid xenon detector for dark matter searches",
abstract = "Observation of rotational curve of spiral galaxies shows that a large fraction (∼23{\%}) of the mass density of the universe is unaccounted for. Such a significant percentage of missing dark matter suggests that the universe may consist of new types of elementary particles. A compelling explanation for the new particles is the existence of Weakly Interacting Massive Particles (WIMPs), which are non-baryonic particles characterized by particle physics theories beyond the Standard Model. WIMPs are believed to only interact through the weak force and gravity; hence the interaction cross section with ordinary matter is extremely small. Therefore, experimental techniques that combine low radioactivity, low energy thresholds, efficient discrimination against electronic recoil backgrounds, and scalability to large detector masses can only be performed at a deep underground environment where the interference of cosmic rays is obviated. In this paper, we report a cryogenic large liquid xenon detector for dark matter searches at Sanford Lab (Davis Cavern) in the Homestake Mine, USA. The goal of the large underground xenon (LUX) dual-phase detector is to clearly detect (or exclude) WIMPs with a spin independent cross-section per nucleon of 7 × 10 -46 cm 2 , equivalent to ∼0.5 events/100 kg/month in an inner 100 kg fiducial volume (FV) of a 300 kg LXe detector.",
author = "Mei, {D. M.} and Akerib, {D. S.} and Bai, {X. H.} and S. Bedikian and E. Bernard and A. Bolozdynya and A. Bradley and Cahn, {S. B.} and C. Camp and {Carmona Benitez}, {Maria Del Carmen} and D. Carr and Chapman, {J. J.} and K. Clark and T. Classen and T. Coffey and A. Curioni and E. Dahl and S. Dazeley and {de Viveiros}, Luiz and M. Dragowsky and E. Druszkiewicz and Faham, {C. H.} and S. Fiorucci and Gaitskell, {R. J.} and Gibson, {K. R.} and C. Hall and M. Hanhardt and B. Holbrook and M. Ihm and Jacobsen, {R. G.} and L. Kastens and K. Kazkaz and R. Lander and C. Lee and D. Leonard and K. Lesko and A. Lyashenko and Malling, {D. C.} and R. Mannino and Z. Marquez and D. McKinsey and J. Mock and M. Morii and H. Nelson and Nokkel, {J. A.} and M. Pangilinan and P. Phelps and A. Rodionov and P. Roberts and T. Shutt and W. Skulski and Sofka, {C. J.} and P. Sorensen and J. Spaans and T. Stiegler and R. Svoboda and M. Sweany and J. Thomson and M. Tripathi and Verbus, {J. R.} and N. Walsh and R. Webb and White, {J. T.} and M. Wlasenko and Wolfs, {F. L.H.} and M. Woods and C. Zhang",
year = "2012",
month = "1",
day = "1",
doi = "10.1088/1742-6596/400/5/052021",
language = "English (US)",
volume = "400",
journal = "Journal of Physics: Conference Series",
issn = "1742-6588",
publisher = "IOP Publishing Ltd.",
number = "PART 4",

}

Mei, DM, Akerib, DS, Bai, XH, Bedikian, S, Bernard, E, Bolozdynya, A, Bradley, A, Cahn, SB, Camp, C, Carmona Benitez, MDC, Carr, D, Chapman, JJ, Clark, K, Classen, T, Coffey, T, Curioni, A, Dahl, E, Dazeley, S, de Viveiros, L, Dragowsky, M, Druszkiewicz, E, Faham, CH, Fiorucci, S, Gaitskell, RJ, Gibson, KR, Hall, C, Hanhardt, M, Holbrook, B, Ihm, M, Jacobsen, RG, Kastens, L, Kazkaz, K, Lander, R, Lee, C, Leonard, D, Lesko, K, Lyashenko, A, Malling, DC, Mannino, R, Marquez, Z, McKinsey, D, Mock, J, Morii, M, Nelson, H, Nokkel, JA, Pangilinan, M, Phelps, P, Rodionov, A, Roberts, P, Shutt, T, Skulski, W, Sofka, CJ, Sorensen, P, Spaans, J, Stiegler, T, Svoboda, R, Sweany, M, Thomson, J, Tripathi, M, Verbus, JR, Walsh, N, Webb, R, White, JT, Wlasenko, M, Wolfs, FLH, Woods, M & Zhang, C 2012, 'Cryogenic large liquid xenon detector for dark matter searches', Journal of Physics: Conference Series, vol. 400, no. PART 4, 052021. https://doi.org/10.1088/1742-6596/400/5/052021

Cryogenic large liquid xenon detector for dark matter searches. / Mei, D. M.; Akerib, D. S.; Bai, X. H.; Bedikian, S.; Bernard, E.; Bolozdynya, A.; Bradley, A.; Cahn, S. B.; Camp, C.; Carmona Benitez, Maria Del Carmen; Carr, D.; Chapman, J. J.; Clark, K.; Classen, T.; Coffey, T.; Curioni, A.; Dahl, E.; Dazeley, S.; de Viveiros, Luiz; Dragowsky, M.; Druszkiewicz, E.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gibson, K. R.; Hall, C.; Hanhardt, M.; Holbrook, B.; Ihm, M.; Jacobsen, R. G.; Kastens, L.; Kazkaz, K.; Lander, R.; Lee, C.; Leonard, D.; Lesko, K.; Lyashenko, A.; Malling, D. C.; Mannino, R.; Marquez, Z.; McKinsey, D.; Mock, J.; Morii, M.; Nelson, H.; Nokkel, J. A.; Pangilinan, M.; Phelps, P.; Rodionov, A.; Roberts, P.; Shutt, T.; Skulski, W.; Sofka, C. J.; Sorensen, P.; Spaans, J.; Stiegler, T.; Svoboda, R.; Sweany, M.; Thomson, J.; Tripathi, M.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; Wlasenko, M.; Wolfs, F. L.H.; Woods, M.; Zhang, C.

In: Journal of Physics: Conference Series, Vol. 400, No. PART 4, 052021, 01.01.2012.

Research output: Contribution to journalConference article

TY - JOUR

T1 - Cryogenic large liquid xenon detector for dark matter searches

AU - Mei, D. M.

AU - Akerib, D. S.

AU - Bai, X. H.

AU - Bedikian, S.

AU - Bernard, E.

AU - Bolozdynya, A.

AU - Bradley, A.

AU - Cahn, S. B.

AU - Camp, C.

AU - Carmona Benitez, Maria Del Carmen

AU - Carr, D.

AU - Chapman, J. J.

AU - Clark, K.

AU - Classen, T.

AU - Coffey, T.

AU - Curioni, A.

AU - Dahl, E.

AU - Dazeley, S.

AU - de Viveiros, Luiz

AU - Dragowsky, M.

AU - Druszkiewicz, E.

AU - Faham, C. H.

AU - Fiorucci, S.

AU - Gaitskell, R. J.

AU - Gibson, K. R.

AU - Hall, C.

AU - Hanhardt, M.

AU - Holbrook, B.

AU - Ihm, M.

AU - Jacobsen, R. G.

AU - Kastens, L.

AU - Kazkaz, K.

AU - Lander, R.

AU - Lee, C.

AU - Leonard, D.

AU - Lesko, K.

AU - Lyashenko, A.

AU - Malling, D. C.

AU - Mannino, R.

AU - Marquez, Z.

AU - McKinsey, D.

AU - Mock, J.

AU - Morii, M.

AU - Nelson, H.

AU - Nokkel, J. A.

AU - Pangilinan, M.

AU - Phelps, P.

AU - Rodionov, A.

AU - Roberts, P.

AU - Shutt, T.

AU - Skulski, W.

AU - Sofka, C. J.

AU - Sorensen, P.

AU - Spaans, J.

AU - Stiegler, T.

AU - Svoboda, R.

AU - Sweany, M.

AU - Thomson, J.

AU - Tripathi, M.

AU - Verbus, J. R.

AU - Walsh, N.

AU - Webb, R.

AU - White, J. T.

AU - Wlasenko, M.

AU - Wolfs, F. L.H.

AU - Woods, M.

AU - Zhang, C.

PY - 2012/1/1

Y1 - 2012/1/1

N2 - Observation of rotational curve of spiral galaxies shows that a large fraction (∼23%) of the mass density of the universe is unaccounted for. Such a significant percentage of missing dark matter suggests that the universe may consist of new types of elementary particles. A compelling explanation for the new particles is the existence of Weakly Interacting Massive Particles (WIMPs), which are non-baryonic particles characterized by particle physics theories beyond the Standard Model. WIMPs are believed to only interact through the weak force and gravity; hence the interaction cross section with ordinary matter is extremely small. Therefore, experimental techniques that combine low radioactivity, low energy thresholds, efficient discrimination against electronic recoil backgrounds, and scalability to large detector masses can only be performed at a deep underground environment where the interference of cosmic rays is obviated. In this paper, we report a cryogenic large liquid xenon detector for dark matter searches at Sanford Lab (Davis Cavern) in the Homestake Mine, USA. The goal of the large underground xenon (LUX) dual-phase detector is to clearly detect (or exclude) WIMPs with a spin independent cross-section per nucleon of 7 × 10 -46 cm 2 , equivalent to ∼0.5 events/100 kg/month in an inner 100 kg fiducial volume (FV) of a 300 kg LXe detector.

AB - Observation of rotational curve of spiral galaxies shows that a large fraction (∼23%) of the mass density of the universe is unaccounted for. Such a significant percentage of missing dark matter suggests that the universe may consist of new types of elementary particles. A compelling explanation for the new particles is the existence of Weakly Interacting Massive Particles (WIMPs), which are non-baryonic particles characterized by particle physics theories beyond the Standard Model. WIMPs are believed to only interact through the weak force and gravity; hence the interaction cross section with ordinary matter is extremely small. Therefore, experimental techniques that combine low radioactivity, low energy thresholds, efficient discrimination against electronic recoil backgrounds, and scalability to large detector masses can only be performed at a deep underground environment where the interference of cosmic rays is obviated. In this paper, we report a cryogenic large liquid xenon detector for dark matter searches at Sanford Lab (Davis Cavern) in the Homestake Mine, USA. The goal of the large underground xenon (LUX) dual-phase detector is to clearly detect (or exclude) WIMPs with a spin independent cross-section per nucleon of 7 × 10 -46 cm 2 , equivalent to ∼0.5 events/100 kg/month in an inner 100 kg fiducial volume (FV) of a 300 kg LXe detector.

UR - http://www.scopus.com/inward/record.url?scp=84873622330&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84873622330&partnerID=8YFLogxK

U2 - 10.1088/1742-6596/400/5/052021

DO - 10.1088/1742-6596/400/5/052021

M3 - Conference article

AN - SCOPUS:84873622330

VL - 400

JO - Journal of Physics: Conference Series

JF - Journal of Physics: Conference Series

SN - 1742-6588

IS - PART 4

M1 - 052021

ER -

Mei DM, Akerib DS, Bai XH, Bedikian S, Bernard E, Bolozdynya A et al. Cryogenic large liquid xenon detector for dark matter searches. Journal of Physics: Conference Series. 2012 Jan 1;400(PART 4). 052021. https://doi.org/10.1088/1742-6596/400/5/052021