Curve number and runoff coefficients for extensive living roofs

Elizabeth Fassman-Beck, William Hunt, Robert Berghage, Donald Carpenter, Timothy Kurtz, Virginia Stovin, Bridget Wadzuk

Research output: Contribution to journalArticlepeer-review

42 Scopus citations


Living roofs are a green infrastructure (GI)/low-impact development (LID) stormwater control measure (SCM) increasingly drawing worldwide attention. Despite substantial performance evidence in the literature, the lack of a curve number (CN) or volumetric runoff coefficient (Cv) to apply to prescribed methodologies for planning and regulatory submissions may be perceived as a barrier for implementation. Paired rainfall-runoff data were analyzed for up to 21 living roofs with varying configurations and in different climates from studies identified in the literature and previously-unpublished data. Frequency analysis of empirical performance evidence from 14 living roofs indicates that meaningful runoff is not generated from the majority of small rainfall events. Where planning requires the use of the CN method, a step function is suggested: (1) runoff volume=0 for design rainfall events up to 20-30 mm, if appropriate moisture storage capacity is provided by the substrate; (2) runoff volume is determined with CN=84 for larger rainfall events, or for events that exceed the actual moisture storage capacity. Cv increases with rainfall depth (P), and may be reasonably predicted for 16 living roofs by Cv =a * exp(b/P), where regression coefficients a and b were empirically determined for each climate zone. CN or Cv values are considered best fit, but they are generally poor representations of actual living roof hydrology. Further work is required to develop living roof specific, verified continuous simulation computer-modeling techniques and to quantify the role of the plants in stormwater control.

Original languageEnglish (US)
Article number04015073
JournalJournal of Hydrologic Engineering
Issue number3
StatePublished - Mar 1 2016

All Science Journal Classification (ASJC) codes

  • Environmental Chemistry
  • Civil and Structural Engineering
  • Water Science and Technology
  • Environmental Science(all)


Dive into the research topics of 'Curve number and runoff coefficients for extensive living roofs'. Together they form a unique fingerprint.

Cite this