Abstract
While large scale deployment of plug-in electric vehicles (PEVs) offers promising advantages, such as environmental benefits, energy security, and economic stability, it also poses certain cybersecurity related challenges. Unlike power grid security, PEV cybersecurity is significantly underexplored. However, cyberattacks on PEVs may lead to disastrous situations such as out-of-service EVs via denial-of-charging (DoC) or battery pack damage via overcharging. In this article, we attempt to address this issue by exploring control-oriented approaches for PEV cybersecurity. Specifically, we focus on designing algorithms for detecting cyberattacks that can potentially affect PEV battery packs during charging. We discuss two algorithms: first, static detector that utilizes only measured variables, and, second, dynamic detector that utilizes the knowledge of system dynamics along with the measurements. Furthermore, we propose a filter-based design approach for the dynamic detector that considers a multiobjective criterion including stability, robustness, and attack sensitivity. We perform theoretical analysis and simulation studies to evaluate the effectiveness of the algorithms under DoC and overcharging attacks that indicate the superiority of dynamic detector in terms of attack detectability.
Original language | English (US) |
---|---|
Article number | 8960519 |
Pages (from-to) | 478-487 |
Number of pages | 10 |
Journal | IEEE Transactions on Industrial Electronics |
Volume | 68 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2021 |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Electrical and Electronic Engineering