Damage-mitigating control of a reusable rocket engine

Part I-life prediction of the main thrust chamber wall

Xiaowen Dai, Asok Ray

    Research output: Contribution to journalArticle

    21 Citations (Scopus)

    Abstract

    The goal of damage-mitigating control in reusable rocket engines is to achieve high performance without overstraining the mechanical structures; and the major benefit is an increase in structural durability with no significant loss of performance. This sequence of papers in two parts investigates the feasibility of damage mitigating control of a reusable rocket engine similar to the Space Shuttle Main Engine (SSME). The challenge here is to characterize the thermo-mechanical behavior of the structural materials for damage prediction in conjunction with dynamic performance analysis of the thermo-fluid process in the rocket engine, and then utilize this information in a mathematically and computationally tractable form for synthesizing decision and control algorithms. This paper is the first part and investigates the damage phenomena in the coolant channel ligament of the main thrust chamber of a rocket engine that are characterized by progressive bulging-out and incremental thinning leading to eventual failure by tensile rupture. A creep damage model is analytically derived based on the theories of sandwich beam and viscoplasticity. The objective of this model is to generate a closedform solution of the wall thin-out in real time where the ligament geometry is continuously updated to account for the resulting deformation. The creep damage model has been examined for both single-cycle and multi-cycle stress-strain behavior, and the results are in agreement with those obtained from the finite element analyses and experimental observation. Due to its computational efficiency, this damage/life prediction model is suitable for on-line applications of decision and control, and also permits parametric studies for off-line synthesis of damage mitigating control systems. The second part, which is a companion paper, develops an optimal policy for damage mitigating control of the rocket engine.

    Original languageEnglish (US)
    Pages (from-to)401-408
    Number of pages8
    JournalJournal of Dynamic Systems, Measurement and Control, Transactions of the ASME
    Volume118
    Issue number3
    DOIs
    StatePublished - Jan 1 1996

    Fingerprint

    reusable rocket engines
    Reusable rockets
    engine parts
    thrust chambers
    Rocket engines
    damage
    predictions
    Ligaments
    rocket engines
    Creep
    ligaments
    Viscoplasticity
    Space shuttles
    Computational efficiency
    Coolants
    Space Shuttle Main Engine
    stress cycles
    Durability
    viscoplasticity
    bulging

    All Science Journal Classification (ASJC) codes

    • Control and Systems Engineering
    • Information Systems
    • Instrumentation
    • Mechanical Engineering
    • Computer Science Applications

    Cite this

    @article{6ff6ae01ca034b4394092925ac7320ec,
    title = "Damage-mitigating control of a reusable rocket engine: Part I-life prediction of the main thrust chamber wall",
    abstract = "The goal of damage-mitigating control in reusable rocket engines is to achieve high performance without overstraining the mechanical structures; and the major benefit is an increase in structural durability with no significant loss of performance. This sequence of papers in two parts investigates the feasibility of damage mitigating control of a reusable rocket engine similar to the Space Shuttle Main Engine (SSME). The challenge here is to characterize the thermo-mechanical behavior of the structural materials for damage prediction in conjunction with dynamic performance analysis of the thermo-fluid process in the rocket engine, and then utilize this information in a mathematically and computationally tractable form for synthesizing decision and control algorithms. This paper is the first part and investigates the damage phenomena in the coolant channel ligament of the main thrust chamber of a rocket engine that are characterized by progressive bulging-out and incremental thinning leading to eventual failure by tensile rupture. A creep damage model is analytically derived based on the theories of sandwich beam and viscoplasticity. The objective of this model is to generate a closedform solution of the wall thin-out in real time where the ligament geometry is continuously updated to account for the resulting deformation. The creep damage model has been examined for both single-cycle and multi-cycle stress-strain behavior, and the results are in agreement with those obtained from the finite element analyses and experimental observation. Due to its computational efficiency, this damage/life prediction model is suitable for on-line applications of decision and control, and also permits parametric studies for off-line synthesis of damage mitigating control systems. The second part, which is a companion paper, develops an optimal policy for damage mitigating control of the rocket engine.",
    author = "Xiaowen Dai and Asok Ray",
    year = "1996",
    month = "1",
    day = "1",
    doi = "10.1115/1.2801159",
    language = "English (US)",
    volume = "118",
    pages = "401--408",
    journal = "Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME",
    issn = "0022-0434",
    publisher = "American Society of Mechanical Engineers(ASME)",
    number = "3",

    }

    TY - JOUR

    T1 - Damage-mitigating control of a reusable rocket engine

    T2 - Part I-life prediction of the main thrust chamber wall

    AU - Dai, Xiaowen

    AU - Ray, Asok

    PY - 1996/1/1

    Y1 - 1996/1/1

    N2 - The goal of damage-mitigating control in reusable rocket engines is to achieve high performance without overstraining the mechanical structures; and the major benefit is an increase in structural durability with no significant loss of performance. This sequence of papers in two parts investigates the feasibility of damage mitigating control of a reusable rocket engine similar to the Space Shuttle Main Engine (SSME). The challenge here is to characterize the thermo-mechanical behavior of the structural materials for damage prediction in conjunction with dynamic performance analysis of the thermo-fluid process in the rocket engine, and then utilize this information in a mathematically and computationally tractable form for synthesizing decision and control algorithms. This paper is the first part and investigates the damage phenomena in the coolant channel ligament of the main thrust chamber of a rocket engine that are characterized by progressive bulging-out and incremental thinning leading to eventual failure by tensile rupture. A creep damage model is analytically derived based on the theories of sandwich beam and viscoplasticity. The objective of this model is to generate a closedform solution of the wall thin-out in real time where the ligament geometry is continuously updated to account for the resulting deformation. The creep damage model has been examined for both single-cycle and multi-cycle stress-strain behavior, and the results are in agreement with those obtained from the finite element analyses and experimental observation. Due to its computational efficiency, this damage/life prediction model is suitable for on-line applications of decision and control, and also permits parametric studies for off-line synthesis of damage mitigating control systems. The second part, which is a companion paper, develops an optimal policy for damage mitigating control of the rocket engine.

    AB - The goal of damage-mitigating control in reusable rocket engines is to achieve high performance without overstraining the mechanical structures; and the major benefit is an increase in structural durability with no significant loss of performance. This sequence of papers in two parts investigates the feasibility of damage mitigating control of a reusable rocket engine similar to the Space Shuttle Main Engine (SSME). The challenge here is to characterize the thermo-mechanical behavior of the structural materials for damage prediction in conjunction with dynamic performance analysis of the thermo-fluid process in the rocket engine, and then utilize this information in a mathematically and computationally tractable form for synthesizing decision and control algorithms. This paper is the first part and investigates the damage phenomena in the coolant channel ligament of the main thrust chamber of a rocket engine that are characterized by progressive bulging-out and incremental thinning leading to eventual failure by tensile rupture. A creep damage model is analytically derived based on the theories of sandwich beam and viscoplasticity. The objective of this model is to generate a closedform solution of the wall thin-out in real time where the ligament geometry is continuously updated to account for the resulting deformation. The creep damage model has been examined for both single-cycle and multi-cycle stress-strain behavior, and the results are in agreement with those obtained from the finite element analyses and experimental observation. Due to its computational efficiency, this damage/life prediction model is suitable for on-line applications of decision and control, and also permits parametric studies for off-line synthesis of damage mitigating control systems. The second part, which is a companion paper, develops an optimal policy for damage mitigating control of the rocket engine.

    UR - http://www.scopus.com/inward/record.url?scp=0013445357&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=0013445357&partnerID=8YFLogxK

    U2 - 10.1115/1.2801159

    DO - 10.1115/1.2801159

    M3 - Article

    VL - 118

    SP - 401

    EP - 408

    JO - Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME

    JF - Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME

    SN - 0022-0434

    IS - 3

    ER -