TY - JOUR
T1 - Data-driven approximation algorithms for rapid performance evaluation and optimization of civil structures
AU - Tseranidis, Stavros
AU - Brown, Nathan C.
AU - Mueller, Caitlin T.
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2016/12/1
Y1 - 2016/12/1
N2 - This paper explores the use of data-driven approximation algorithms, often called surrogate modeling, in the early-stage design of structures. The use of surrogate models to rapidly evaluate design performance can lead to a more in-depth exploration of a design space and reduce computational time of optimization algorithms. While this approach has been widely developed and used in related disciplines such as aerospace engineering, there are few examples of its application in civil engineering. This paper focuses on the general use of surrogate modeling in the design of civil structures and examines six model types that span a wide range of characteristics. Original contributions include novel metrics and visualization techniques for understanding model error and a new robustness framework that accounts for variability in model comparison. These concepts are applied to a multi-objective case study of an airport terminal design that considers both structural material volume and operational energy consumption.
AB - This paper explores the use of data-driven approximation algorithms, often called surrogate modeling, in the early-stage design of structures. The use of surrogate models to rapidly evaluate design performance can lead to a more in-depth exploration of a design space and reduce computational time of optimization algorithms. While this approach has been widely developed and used in related disciplines such as aerospace engineering, there are few examples of its application in civil engineering. This paper focuses on the general use of surrogate modeling in the design of civil structures and examines six model types that span a wide range of characteristics. Original contributions include novel metrics and visualization techniques for understanding model error and a new robustness framework that accounts for variability in model comparison. These concepts are applied to a multi-objective case study of an airport terminal design that considers both structural material volume and operational energy consumption.
UR - http://www.scopus.com/inward/record.url?scp=84977143016&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84977143016&partnerID=8YFLogxK
U2 - 10.1016/j.autcon.2016.02.002
DO - 10.1016/j.autcon.2016.02.002
M3 - Article
AN - SCOPUS:84977143016
SN - 0926-5805
VL - 72
SP - 279
EP - 293
JO - Automation in Construction
JF - Automation in Construction
ER -