Deep-coverage MPS analysis of heteroplasmic variants within the mtgenome allows for frequent differentiation of maternal relatives

Research output: Contribution to journalArticle

10 Scopus citations

Abstract

Distinguishing between maternal relatives through mitochondrial (mt) DNA sequence analysis has been a longstanding desire of the forensic community. Using a deep-coverage, massively parallel sequencing (DCMPS) approach, we studied the pattern of mtDNA heteroplasmy across the mtgenomes of 39 mother-child pairs of European decent; haplogroups H, J, K, R, T, U, and X. Both shared and differentiating heteroplasmy were observed on a frequent basis in these closely related maternal relatives, with the minor variant often presented as 2–10% of the sequencing reads. A total of 17 pairs exhibited differentiating heteroplasmy (44%), with the majority of sites (76%, 16 of 21) occurring in the coding region, further illustrating the value of conducting sequence analysis on the entire mtgenome. A number of the sites of differentiating heteroplasmy resulted in non-synonymous changes in protein sequence (5 of 21), and to changes in transfer or ribosomal RNA sequences (5 of 21), highlighting the potentially deleterious nature of these heteroplasmic states. Shared heteroplasmy was observed in 12 of the 39 mother-child pairs (31%), with no duplicate sites of either differentiating or shared heteroplasmy observed; a single nucleotide position (16093) was duplicated between the data sets. Finally, rates of heteroplasmy in blood and buccal cells were compared, as it is known that rates can vary across tissue types, with similar observations in the current study. Our data support the view that differentiating heteroplasmy across the mtgenome can be used to frequently distinguish maternal relatives, and could be of interest to both the medical genetics and forensic communities.

Original languageEnglish (US)
Article number124
JournalGenes
Volume9
Issue number3
DOIs
StatePublished - Mar 2018

All Science Journal Classification (ASJC) codes

  • Genetics
  • Genetics(clinical)

Fingerprint Dive into the research topics of 'Deep-coverage MPS analysis of heteroplasmic variants within the mtgenome allows for frequent differentiation of maternal relatives'. Together they form a unique fingerprint.

  • Cite this