TY - GEN
T1 - Deep networks with shape priors for nucleus detection
AU - Tofighi, Mohammad
AU - Guo, Tiantong
AU - Vanamala, Jairam K.P.
AU - Monga, Vishal
PY - 2018/8/29
Y1 - 2018/8/29
N2 - Detection of cell nuclei in microscopic images is a challenging research topic, because of limitations in cellular image quality and diversity of nuclear morphology, i.e. varying nuclei shapes, sizes, and overlaps between multiple cell nuclei. This has been a topic of enduring interest with promising recent success shown by deep learning methods. These methods train for example convolutional neural networks (CNNs) with a training set of input images and known, labeled nuclei locations. Many of these methods are supplemented by spatial or morphological processing. We develop a new approach that we call Shape Priors with Convolutional Neural Networks (SP-CNN) to perform significantly enhanced nuclei detection. A set of canonical shapes is prepared with the help of a domain expert. Subsequently, we present a new network structure that can incorporate 'expected behavior' of nucleus shapes via two components: learnable layers that perform the nucleus detection and a fixed processing part that guides the learning with prior information. Analytically, we formulate a new regularization term that is targeted at penalizing false positives while simultaneously encouraging detection inside cell nucleus boundary. Experimental results on a challenging dataset reveal that SP-CNN is competitive with or outperforms several state-of-the-art methods.
AB - Detection of cell nuclei in microscopic images is a challenging research topic, because of limitations in cellular image quality and diversity of nuclear morphology, i.e. varying nuclei shapes, sizes, and overlaps between multiple cell nuclei. This has been a topic of enduring interest with promising recent success shown by deep learning methods. These methods train for example convolutional neural networks (CNNs) with a training set of input images and known, labeled nuclei locations. Many of these methods are supplemented by spatial or morphological processing. We develop a new approach that we call Shape Priors with Convolutional Neural Networks (SP-CNN) to perform significantly enhanced nuclei detection. A set of canonical shapes is prepared with the help of a domain expert. Subsequently, we present a new network structure that can incorporate 'expected behavior' of nucleus shapes via two components: learnable layers that perform the nucleus detection and a fixed processing part that guides the learning with prior information. Analytically, we formulate a new regularization term that is targeted at penalizing false positives while simultaneously encouraging detection inside cell nucleus boundary. Experimental results on a challenging dataset reveal that SP-CNN is competitive with or outperforms several state-of-the-art methods.
UR - http://www.scopus.com/inward/record.url?scp=85062909090&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062909090&partnerID=8YFLogxK
U2 - 10.1109/ICIP.2018.8451797
DO - 10.1109/ICIP.2018.8451797
M3 - Conference contribution
AN - SCOPUS:85062909090
T3 - Proceedings - International Conference on Image Processing, ICIP
SP - 719
EP - 723
BT - 2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings
PB - IEEE Computer Society
T2 - 25th IEEE International Conference on Image Processing, ICIP 2018
Y2 - 7 October 2018 through 10 October 2018
ER -