Deep Reinforcement Learning-Based Server Selection for Mobile Edge Computing

Heting Liu, Guohong Cao

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

With Mobile Edge Computing (MEC), computational intensive applications can be offloaded to the nearby edge servers to support latency-sensitive applications on mobile devices. Different from the cloud, edge servers usually have limited resources, and then selecting which edge server to run the offloaded computation becomes an important issue. Although server selection has received considerable attention, not much work has been done to consider the limited coverage of the edge server and the frequent user movement, which introduce many dynamic changing factors affecting the workload of the edge server and making it hard to achieve long-term optimum in the edge server selection. To deal with these challenges, we model the problem of continuous server selection as a Markov Decision Process (MDP). The difficulty of this problem is that achieving long-term optimum requires future knowledge, such as user mobility, server workload, etc, which is not known a priori. We do not have such knowledge and thus cannot find the optimal policy through traditional methods. To address this problem, we propose a Deep Reinforcement Learning (DRL) based algorithm to learn the selection policy based on the observed performance of past server selections. Specifically, a Long Short-Term Memory (LSTM) based neural network is exploited to encode the historical information which helps infer future knowledge of the dynamically changing factors. Then the DRL model selects the optimal server automatically based on the extracted system states. Extensive trace-driven evaluations demonstrate that the proposed DRL-based algorithm has the lowest overall cost compared to existing solutions.

Original languageEnglish (US)
Pages (from-to)13351-13363
Number of pages13
JournalIEEE Transactions on Vehicular Technology
Volume70
Issue number12
DOIs
StatePublished - Dec 1 2021

All Science Journal Classification (ASJC) codes

  • Automotive Engineering
  • Aerospace Engineering
  • Electrical and Electronic Engineering
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Deep Reinforcement Learning-Based Server Selection for Mobile Edge Computing'. Together they form a unique fingerprint.

Cite this