Deformed twistors and higher spin conformal (super-)algebras in four dimensions

Karan Govil, Murat Gunaydin

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Abstract: Massless conformal scalar field in d = 4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2, 2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2, 2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS5. The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS5 is simply the enveloping algebra of SU(2, 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2, 2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in HS algebras in AdS4 where the corresponding 3d conformal group (Formula presented.) admits only two massless representations (minreps), namely the scalar and spinor singletons.

Original languageEnglish (US)
Article number26
JournalJournal of High Energy Physics
Volume2015
Issue number3
DOIs
StatePublished - Jan 1 2015

Fingerprint

algebra
scalars
generators
oscillators

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Cite this

@article{27efdb2153974b5ebfb5ad546fa1a2dd,
title = "Deformed twistors and higher spin conformal (super-)algebras in four dimensions",
abstract = "Abstract: Massless conformal scalar field in d = 4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2, 2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2, 2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS5. The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS5 is simply the enveloping algebra of SU(2, 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2, 2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in HS algebras in AdS4 where the corresponding 3d conformal group (Formula presented.) admits only two massless representations (minreps), namely the scalar and spinor singletons.",
author = "Karan Govil and Murat Gunaydin",
year = "2015",
month = "1",
day = "1",
doi = "10.1007/JHEP03(2015)026",
language = "English (US)",
volume = "2015",
journal = "Journal of High Energy Physics",
issn = "1126-6708",
publisher = "Springer Verlag",
number = "3",

}

Deformed twistors and higher spin conformal (super-)algebras in four dimensions. / Govil, Karan; Gunaydin, Murat.

In: Journal of High Energy Physics, Vol. 2015, No. 3, 26, 01.01.2015.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Deformed twistors and higher spin conformal (super-)algebras in four dimensions

AU - Govil, Karan

AU - Gunaydin, Murat

PY - 2015/1/1

Y1 - 2015/1/1

N2 - Abstract: Massless conformal scalar field in d = 4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2, 2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2, 2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS5. The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS5 is simply the enveloping algebra of SU(2, 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2, 2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in HS algebras in AdS4 where the corresponding 3d conformal group (Formula presented.) admits only two massless representations (minreps), namely the scalar and spinor singletons.

AB - Abstract: Massless conformal scalar field in d = 4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2, 2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2, 2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS5. The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS5 is simply the enveloping algebra of SU(2, 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2, 2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in HS algebras in AdS4 where the corresponding 3d conformal group (Formula presented.) admits only two massless representations (minreps), namely the scalar and spinor singletons.

UR - http://www.scopus.com/inward/record.url?scp=84924678570&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84924678570&partnerID=8YFLogxK

U2 - 10.1007/JHEP03(2015)026

DO - 10.1007/JHEP03(2015)026

M3 - Article

VL - 2015

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1126-6708

IS - 3

M1 - 26

ER -