Depth and the local langlands correspondence

Anne Marie Aubert, Paul Baum, Roger Plymen

Research output: Chapter in Book/Report/Conference proceedingChapter

4 Citations (Scopus)

Abstract

Let G be an inner form of a general linear group over a non-archimedean local field. We prove that the local Langlands correspondence for G preserves depths. We also show that the local Langlands correspondence for inner forms of special linear groups preserves the depths of essentially tame Langlands parameters.

Original languageEnglish (US)
Title of host publicationProgress in Mathematics
PublisherSpringer Basel
Pages17-41
Number of pages25
DOIs
StatePublished - Jan 1 2016

Publication series

NameProgress in Mathematics
Volume319
ISSN (Print)0743-1643
ISSN (Electronic)2296-505X

Fingerprint

Correspondence
Special Linear Group
General Linear Group
Local Field
Form

All Science Journal Classification (ASJC) codes

  • Analysis
  • Algebra and Number Theory
  • Geometry and Topology

Cite this

Aubert, A. M., Baum, P., & Plymen, R. (2016). Depth and the local langlands correspondence. In Progress in Mathematics (pp. 17-41). (Progress in Mathematics; Vol. 319). Springer Basel. https://doi.org/10.1007/978-3-319-43648-7_2
Aubert, Anne Marie ; Baum, Paul ; Plymen, Roger. / Depth and the local langlands correspondence. Progress in Mathematics. Springer Basel, 2016. pp. 17-41 (Progress in Mathematics).
@inbook{85dac2f49bdc42ce8e648120265a889e,
title = "Depth and the local langlands correspondence",
abstract = "Let G be an inner form of a general linear group over a non-archimedean local field. We prove that the local Langlands correspondence for G preserves depths. We also show that the local Langlands correspondence for inner forms of special linear groups preserves the depths of essentially tame Langlands parameters.",
author = "Aubert, {Anne Marie} and Paul Baum and Roger Plymen",
year = "2016",
month = "1",
day = "1",
doi = "10.1007/978-3-319-43648-7_2",
language = "English (US)",
series = "Progress in Mathematics",
publisher = "Springer Basel",
pages = "17--41",
booktitle = "Progress in Mathematics",

}

Aubert, AM, Baum, P & Plymen, R 2016, Depth and the local langlands correspondence. in Progress in Mathematics. Progress in Mathematics, vol. 319, Springer Basel, pp. 17-41. https://doi.org/10.1007/978-3-319-43648-7_2

Depth and the local langlands correspondence. / Aubert, Anne Marie; Baum, Paul; Plymen, Roger.

Progress in Mathematics. Springer Basel, 2016. p. 17-41 (Progress in Mathematics; Vol. 319).

Research output: Chapter in Book/Report/Conference proceedingChapter

TY - CHAP

T1 - Depth and the local langlands correspondence

AU - Aubert, Anne Marie

AU - Baum, Paul

AU - Plymen, Roger

PY - 2016/1/1

Y1 - 2016/1/1

N2 - Let G be an inner form of a general linear group over a non-archimedean local field. We prove that the local Langlands correspondence for G preserves depths. We also show that the local Langlands correspondence for inner forms of special linear groups preserves the depths of essentially tame Langlands parameters.

AB - Let G be an inner form of a general linear group over a non-archimedean local field. We prove that the local Langlands correspondence for G preserves depths. We also show that the local Langlands correspondence for inner forms of special linear groups preserves the depths of essentially tame Langlands parameters.

UR - http://www.scopus.com/inward/record.url?scp=85019702444&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85019702444&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-43648-7_2

DO - 10.1007/978-3-319-43648-7_2

M3 - Chapter

AN - SCOPUS:85019702444

T3 - Progress in Mathematics

SP - 17

EP - 41

BT - Progress in Mathematics

PB - Springer Basel

ER -

Aubert AM, Baum P, Plymen R. Depth and the local langlands correspondence. In Progress in Mathematics. Springer Basel. 2016. p. 17-41. (Progress in Mathematics). https://doi.org/10.1007/978-3-319-43648-7_2