Design and development of a battery internal short circuit testmachine

Scott C. DeLaney, Mary B. Burbules, Mayank Garg, Adam S. Hollinger, Christopher D. Rahn

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The use of lithium-based batteries, due to their high energy density, has become popular for power sources in portable electronic devices. Safety concerns over lithium cell applications have arisen due to their lower abuse tolerance compared to standard battery designs. Internal short circuits present one of the more dangerous abuse situations since there is a great potential of thermal runaway leading to fire and explosion. Field failures and recalls associated with internal short circuits demonstrate the risks of lithium batteries. Understanding the response of lithium cells under internal short circuit conditions is of great importance to ensure the safe development of lithium battery application. In this work, an internal short circuit test machine was designed to conduct nail penetration tests of lithium chemistry cells. The test machine successfully provides the required force to allow for multi-cell penetration. The test machine also provides accurate control of the penetrating nail's position and velocity. This testing will support the development of models to simulate the mechanism of internal short circuits of lithium cells.

Original languageEnglish (US)
Title of host publicationASME 2017 11th International Conference on Energy Sustainability, ES 2017, collocated with the ASME 2017 Power Conference Joint with ICOPE 2017, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791857595
DOIs
StatePublished - Jan 1 2017
EventASME 2017 11th International Conference on Energy Sustainability, ES 2017, collocated with the ASME 2017 Power Conference Joint with ICOPE 2017, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum - Charlotte, United States
Duration: Jun 26 2017Jun 30 2017

Publication series

NameASME 2017 11th International Conference on Energy Sustainability, ES 2017, collocated with the ASME 2017 Power Conference Joint with ICOPE 2017, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum

Other

OtherASME 2017 11th International Conference on Energy Sustainability, ES 2017, collocated with the ASME 2017 Power Conference Joint with ICOPE 2017, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
CountryUnited States
CityCharlotte
Period6/26/176/30/17

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Renewable Energy, Sustainability and the Environment
  • Mechanical Engineering

Cite this

DeLaney, S. C., Burbules, M. B., Garg, M., Hollinger, A. S., & Rahn, C. D. (2017). Design and development of a battery internal short circuit testmachine. In ASME 2017 11th International Conference on Energy Sustainability, ES 2017, collocated with the ASME 2017 Power Conference Joint with ICOPE 2017, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum (ASME 2017 11th International Conference on Energy Sustainability, ES 2017, collocated with the ASME 2017 Power Conference Joint with ICOPE 2017, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum). American Society of Mechanical Engineers. https://doi.org/10.1115/ES2017-3407