TY - JOUR
T1 - Design and implementation of a shape memory alloy actuated reconfigurable airfoil
AU - Strelec, Justin K.
AU - Lagoudas, Dimitris C.
AU - Khan, Mohammad A.
AU - Yen, John
N1 - Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2003
Y1 - 2003
N2 - The unique thermal and mechanical properties exhibited by shape memory alloys (SMAs) present exciting design possibilities in the field of aerospace engineering. When properly trained, SMA wires act as linear actuators by contracting when heated and returning to their original shape when cooled. These SMA wire actuators can be attached to points on the inside of an airfoil, and can be activated to alter the shape of the airfoil. This shape-change can effectively increase the efficiency of a wing in flight at several different flow regimes. To determine the necessary placement of the SMA wire actuators within the wing, a global optimization method that incorporates a coupled structural, thermal, and aerodynamic analysis has been utilized. A genetic algorithm (GA) has been chosen as the optimization tool to efficiently converge to a design solution. The GA used in this case is a hybrid version with global search and optimization capabilities augmented by the simplex method with selective line search as a local search technique. A cost function based on the aerodynamic properties of the airfoil has been used to optimize this design problem to maximize the lift-to-drag ratio for a reconfigured airfoil shape at subsonic flow conditions. A wind tunnel model reconfigurable wing was fabricated based on the design optimization to verify the predicted structural and aerodynamic response. Wind tunnel tests indicated an increase in lift for a given flow velocity and angle of attack by activating the SMA wire actuators. The pressure data taken during the wind tunnel tests followed the trends expected from the numerical pressure results.
AB - The unique thermal and mechanical properties exhibited by shape memory alloys (SMAs) present exciting design possibilities in the field of aerospace engineering. When properly trained, SMA wires act as linear actuators by contracting when heated and returning to their original shape when cooled. These SMA wire actuators can be attached to points on the inside of an airfoil, and can be activated to alter the shape of the airfoil. This shape-change can effectively increase the efficiency of a wing in flight at several different flow regimes. To determine the necessary placement of the SMA wire actuators within the wing, a global optimization method that incorporates a coupled structural, thermal, and aerodynamic analysis has been utilized. A genetic algorithm (GA) has been chosen as the optimization tool to efficiently converge to a design solution. The GA used in this case is a hybrid version with global search and optimization capabilities augmented by the simplex method with selective line search as a local search technique. A cost function based on the aerodynamic properties of the airfoil has been used to optimize this design problem to maximize the lift-to-drag ratio for a reconfigured airfoil shape at subsonic flow conditions. A wind tunnel model reconfigurable wing was fabricated based on the design optimization to verify the predicted structural and aerodynamic response. Wind tunnel tests indicated an increase in lift for a given flow velocity and angle of attack by activating the SMA wire actuators. The pressure data taken during the wind tunnel tests followed the trends expected from the numerical pressure results.
UR - http://www.scopus.com/inward/record.url?scp=0041886804&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0041886804&partnerID=8YFLogxK
U2 - 10.1177/1045389X03034687
DO - 10.1177/1045389X03034687
M3 - Article
AN - SCOPUS:0041886804
SN - 1045-389X
VL - 14
SP - 257
EP - 273
JO - Journal of Intelligent Material Systems and Structures
JF - Journal of Intelligent Material Systems and Structures
IS - 4-5
ER -