Design considerations of submersible unmanned flying vehicle for communications and underwater sampling

Dmitry Bershadsky, Steve Haviland, Pierre E. Valdez, Eric Johnson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

This study examines considerations for a submersible unmanned flying vehicle (SUFV) capable of collecting water samples from seas and rivers, and providing unique operational communications capabilities. The chosen design, the Cormorant, a quadrotor capable of operating in both air and water, is sized to meet the anticipated mission profiles. The proposed proof of concept design shows potential at delivering sensor data more quickly and reliably than current approaches. Also presented are details on the propulsion system design options, configuration, and adaptability of the components to both air and underwater environments. Critical to the proposed design is the capability of the vehicle to quickly submerge at different depths and maintain location while measurements take place. A ballast system is proposed for depth control, while rotors provide propulsion to maneuver and change attitude. Once measurements are collected, the vehicle is capable of surfacing and taking off to fly to a new target location, communicate and/or relay data, or fly back to deliver the data to base. Delivering the sensor data can be accomplished by communicating via both acoustic and radio frequency (RF) communications, and flying to heights and ranges where RF attenuation effects due to atmospheric conditions are minimized.

Original languageEnglish (US)
Title of host publicationOCEANS 2016 MTS/IEEE Monterey, OCE 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509015375
DOIs
StatePublished - Nov 28 2016
Event2016 OCEANS MTS/IEEE Monterey, OCE 2016 - Monterey, United States
Duration: Sep 19 2016Sep 23 2016

Publication series

NameOCEANS 2016 MTS/IEEE Monterey, OCE 2016

Other

Other2016 OCEANS MTS/IEEE Monterey, OCE 2016
CountryUnited States
CityMonterey
Period9/19/169/23/16

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Instrumentation
  • Oceanography
  • Ocean Engineering

Cite this

Bershadsky, D., Haviland, S., Valdez, P. E., & Johnson, E. (2016). Design considerations of submersible unmanned flying vehicle for communications and underwater sampling. In OCEANS 2016 MTS/IEEE Monterey, OCE 2016 [7761266] (OCEANS 2016 MTS/IEEE Monterey, OCE 2016). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/OCEANS.2016.7761266