Design space exploration of pericyclic transmission with counterbalance and bearing load analysis

Zachary A. Cameron, Edward Smith, Hans De Smidt, Robert C. Bill

Research output: Contribution to journalConference article

1 Citation (Scopus)

Abstract

The pericyclic transmission provides the opportunity to vastly impact transmission design in rotorcraft due to its ability to provide exceedingly high reduction ratios in a single stage that would normally require multiple gear stages. This could lead to lighter transmissions with fewer components, increased reliability, efficiency, speed and decreased cost to maintain. While many previous studies have focused upon the gearing within the pericyclic transmission, this work focused on what influences pericyclic geometry, and how changes in geometry impact bearing loads. Specifically, the loading of bearings that must deliver power from the input shaft to the nutating and rotating gears of the system were of primary concern. A comprehensive look at dynamic loads generated by nutating bodies was performed. Methods to address these dynamic loads via application of counterbalances, and deviation from conventional pericyclic transmission designs were utilized to negate the dynamic moment of concern. Counterbalances negating the dynamic moment were shown to weigh between 30-50% of the pericyclic motion converter gears in a 40:1 reduction ratio pericyclic design at 12,000 rpm input speed and reduced applied moments by three orders of magnitude. Finally, a static solver was used to determine the bearing loads with updated component geometries and mass moment of inertias that included the required counterbalances.

Original languageEnglish (US)
JournalAnnual Forum Proceedings - AHS International
Volume2018-May
StatePublished - Jan 1 2018
Event74th American Helicopter Society International Annual Forum and Technology Display 2018: The Future of Vertical Flight - Phoenix, United States
Duration: May 14 2018May 17 2018

Fingerprint

Bearings (structural)
Gears
Dynamic loads
Geometry
Costs

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Cite this

@article{4e125972923844d6bf3d041df9bb9750,
title = "Design space exploration of pericyclic transmission with counterbalance and bearing load analysis",
abstract = "The pericyclic transmission provides the opportunity to vastly impact transmission design in rotorcraft due to its ability to provide exceedingly high reduction ratios in a single stage that would normally require multiple gear stages. This could lead to lighter transmissions with fewer components, increased reliability, efficiency, speed and decreased cost to maintain. While many previous studies have focused upon the gearing within the pericyclic transmission, this work focused on what influences pericyclic geometry, and how changes in geometry impact bearing loads. Specifically, the loading of bearings that must deliver power from the input shaft to the nutating and rotating gears of the system were of primary concern. A comprehensive look at dynamic loads generated by nutating bodies was performed. Methods to address these dynamic loads via application of counterbalances, and deviation from conventional pericyclic transmission designs were utilized to negate the dynamic moment of concern. Counterbalances negating the dynamic moment were shown to weigh between 30-50{\%} of the pericyclic motion converter gears in a 40:1 reduction ratio pericyclic design at 12,000 rpm input speed and reduced applied moments by three orders of magnitude. Finally, a static solver was used to determine the bearing loads with updated component geometries and mass moment of inertias that included the required counterbalances.",
author = "Cameron, {Zachary A.} and Edward Smith and {De Smidt}, Hans and Bill, {Robert C.}",
year = "2018",
month = "1",
day = "1",
language = "English (US)",
volume = "2018-May",
journal = "Annual Forum Proceedings - AHS International",
issn = "1552-2938",
publisher = "American Helicopter Society",

}

Design space exploration of pericyclic transmission with counterbalance and bearing load analysis. / Cameron, Zachary A.; Smith, Edward; De Smidt, Hans; Bill, Robert C.

In: Annual Forum Proceedings - AHS International, Vol. 2018-May, 01.01.2018.

Research output: Contribution to journalConference article

TY - JOUR

T1 - Design space exploration of pericyclic transmission with counterbalance and bearing load analysis

AU - Cameron, Zachary A.

AU - Smith, Edward

AU - De Smidt, Hans

AU - Bill, Robert C.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - The pericyclic transmission provides the opportunity to vastly impact transmission design in rotorcraft due to its ability to provide exceedingly high reduction ratios in a single stage that would normally require multiple gear stages. This could lead to lighter transmissions with fewer components, increased reliability, efficiency, speed and decreased cost to maintain. While many previous studies have focused upon the gearing within the pericyclic transmission, this work focused on what influences pericyclic geometry, and how changes in geometry impact bearing loads. Specifically, the loading of bearings that must deliver power from the input shaft to the nutating and rotating gears of the system were of primary concern. A comprehensive look at dynamic loads generated by nutating bodies was performed. Methods to address these dynamic loads via application of counterbalances, and deviation from conventional pericyclic transmission designs were utilized to negate the dynamic moment of concern. Counterbalances negating the dynamic moment were shown to weigh between 30-50% of the pericyclic motion converter gears in a 40:1 reduction ratio pericyclic design at 12,000 rpm input speed and reduced applied moments by three orders of magnitude. Finally, a static solver was used to determine the bearing loads with updated component geometries and mass moment of inertias that included the required counterbalances.

AB - The pericyclic transmission provides the opportunity to vastly impact transmission design in rotorcraft due to its ability to provide exceedingly high reduction ratios in a single stage that would normally require multiple gear stages. This could lead to lighter transmissions with fewer components, increased reliability, efficiency, speed and decreased cost to maintain. While many previous studies have focused upon the gearing within the pericyclic transmission, this work focused on what influences pericyclic geometry, and how changes in geometry impact bearing loads. Specifically, the loading of bearings that must deliver power from the input shaft to the nutating and rotating gears of the system were of primary concern. A comprehensive look at dynamic loads generated by nutating bodies was performed. Methods to address these dynamic loads via application of counterbalances, and deviation from conventional pericyclic transmission designs were utilized to negate the dynamic moment of concern. Counterbalances negating the dynamic moment were shown to weigh between 30-50% of the pericyclic motion converter gears in a 40:1 reduction ratio pericyclic design at 12,000 rpm input speed and reduced applied moments by three orders of magnitude. Finally, a static solver was used to determine the bearing loads with updated component geometries and mass moment of inertias that included the required counterbalances.

UR - http://www.scopus.com/inward/record.url?scp=85054501642&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054501642&partnerID=8YFLogxK

M3 - Conference article

AN - SCOPUS:85054501642

VL - 2018-May

JO - Annual Forum Proceedings - AHS International

JF - Annual Forum Proceedings - AHS International

SN - 1552-2938

ER -