Detecting potential changes in the meridional overturning circulation at 26°N in the Atlantic

Johanna Baehr, Klaus Keller, Jochem Marotzke

Research output: Contribution to journalArticle

32 Scopus citations

Abstract

We analyze the ability of an oceanic monitoring array to detect potential changes in the North Atlantic meridional overturning circulation (MOC). The observing array is 'deployed' into a numerical model (ECHAM5/MPI-OM), and simulates the measurements of density and wind stress at 26°N in the Atlantic. The simulated array mimics the continuous monitoring system deployed in the framework of the UK Rapid Climate Change program. We analyze a set of three realizations of a climate change scenario (IPCC A1B), in which - within the considered time-horizon of 200 years - the MOC weakens, but does not collapse. For the detection analysis, we assume that the natural variability of the MOC is known from an independent source, the control run. Our detection approach accounts for the effects of observation errors, infrequent observations, autocorrelated internal variability, and uncertainty in the initial conditions. Continuous observation with the simulated array for approximately 60 years yields a statistically significant (p < 0.05) detection with 95 percent reliability assuming a random observation error of 1 Sv (1 Sv = 106 m3 s-1). Observing continuously with an observation error of 3 Sv yields a detection time of about 90 years (with 95 percent reliability). Repeated hydrographic transects every 5 years/ 20 years result in a detection time of about 90 years/120 years, with 95 percent reliability and an assumed observation error of 3 Sv. An observation error of 3 Sv (one standard deviation) is a plausible estimate of the observation error associated with the RAPID UK 26°N array.

Original languageEnglish (US)
Pages (from-to)11-27
Number of pages17
JournalClimatic Change
Volume91
Issue number1-2
DOIs
StatePublished - Nov 2008

All Science Journal Classification (ASJC) codes

  • Global and Planetary Change
  • Atmospheric Science

Fingerprint Dive into the research topics of 'Detecting potential changes in the meridional overturning circulation at 26°N in the Atlantic'. Together they form a unique fingerprint.

Cite this