Detection and Stability of Cyanogen Bromide and Cyanogen Iodide in Drinking Water

Fuyang Jiang, Yuefeng Xie, Kun Dong, Dunqiu Wang, Haixiang Li

Research output: Contribution to journalArticlepeer-review


This study systematically summarized the factors affecting the stability of CNXs, providing a reference for better control and elimination of CNXs. A method for the detection of CNBr and CNI in solution was established using a liquid–liquid extraction/gas chromatography/electron capture detector. Specifically, the method was used to investigate the stability of CNBr and CNI in drinking water, especially in the presence of chlorine and sulfite, and it showed good reproducibility (relative standard deviation <3.05%), high sensitivity (method detection limit <100 ng/L), and good recovery (91.49–107.24%). Degradation kinetic studies of cyanogen halides were conducted, and their degradation rate constants were detected for their hydrolysis, chlorination, and sulfite reduction. For hydrolysis, upon increasing pH from 9.0 to 11.0, the rate constants of CNCl, CNBr, and CNI changed from 8 to 155 × 10−5 s−1, 1.1 to 34.2 × 10−5 s−1, and 1.5 to 6.2 × 10−5 s−1, respectively. In the presence of 1.0 mg/L chlorine, upon increasing pH from 7.0 to 10.0, the rate constants of CNCl, CNBr, and CNI changed from 36 to 105 × 10−5 s−1, 15.8 to 49.0 × 10−5 s−1, and 1.2 to 24.2 × 10−5 s−1, respectively. In the presence of 3 µmol/L sulfite, CNBr and CNI degraded in two phases. In the first phase, they degraded very quickly after the addition of sulfite, whereas, in the second phase, they degraded slowly with rate constants similar to those for hydrolysis. Owing to the electron-withdrawing ability of halogen atoms and the nucleophilic ability of reactive groups such as OH and ClO, the rate constants of cyanogen halides increased with increasing pH, and they decreased in the order of CNCl > CNBr > CNI during hydrolysis and chlorination. The hydrolysis and chlorination results could be used to assess the stability of cyanogen halides in water storage and distribution systems. The sulfite reduction results indicate that quenching residual oxidants with excess sulfite could underestimate the levels of cyanogen halides, especially for CNBr and CNI.

Original languageEnglish (US)
Article number1662
JournalWater (Switzerland)
Issue number10
StatePublished - May 1 2022

All Science Journal Classification (ASJC) codes

  • Geography, Planning and Development
  • Biochemistry
  • Aquatic Science
  • Water Science and Technology


Dive into the research topics of 'Detection and Stability of Cyanogen Bromide and Cyanogen Iodide in Drinking Water'. Together they form a unique fingerprint.

Cite this