Detection of recombination among Salmonella enterica strains using the incongruence length difference test

Eric Wayne Brown, Michael L. Kotewicz, Thomas A. Cebula

Research output: Contribution to journalArticle

47 Scopus citations

Abstract

Particular serovars of Salmonella enterica have emerged as significant foodborne pathogens in humans. At the chromosomal level, discrete regions in the Salmonella genome have been identified that are known to play important roles in the maintenance, survival, and virulence of S. enterica within the host. Interestingly, several of these loci appear to have been acquired by horizontal transfer of DNA among and between bacterial species. The profound importance of recombination in pathogen emergence is just now being realized, perhaps explaining the sudden interest in developing novel and facile ways for detecting putative horizontal transfer events in bacteria. The incongruence length difference (ILD) test offers one such means. ILD uses phylogeny to trace sequences that may have been acquired promiscuously by exchange of DNA during chromosome evolution. We show here that the ILD test readily detects recombinations that have taken place in several housekeeping genes in Salmonella as well as genes composing the type 1 pilin complex (14 min) and the inv-spa invasion gene complex (63 min). Moreover, the ILD test indicated that the mutS gene (64 min), whose product helps protect the bacterial genome from invasion by foreign DNA, appears to have undergone intragenic recombination within S. enterica subspecies I. ILD findings were supported using additional tests known to be independent of the ILD approach (e.g., split decomposition analysis and compatibility of sites). Taken together, these data affirm the application of the ILD test as one approach for identifying recombined sequences in the Salmonella chromosome. Furthermore, horizontally acquired sequences within mutS support a model whereby evolutionarily important recombinants of S. enterica are rescued from strains carrying defective mutS alleles via horizontal transfer.

Original languageEnglish (US)
Pages (from-to)102-120
Number of pages19
JournalMolecular Phylogenetics and Evolution
Volume24
Issue number1
DOIs
StatePublished - Sep 30 2002

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics

Fingerprint Dive into the research topics of 'Detection of recombination among Salmonella enterica strains using the incongruence length difference test'. Together they form a unique fingerprint.

  • Cite this