Determining the neutrino mass with cyclotron radiation emission spectroscopy - Project 8

Ali Ashtari Esfahani, David M. Asner, Sebastian Böser, Raphael Cervantes, Christine Claessens, Luiz de Viveiros, Peter J. Doe, Shepard Doeleman, Justin L. Fernandes, Martin Fertl, Erin C. Finn, Joseph A. Formaggio, Daniel Furse, Mathieu Guigue, Karsten M. Heeger, A. Mark Jones, Kareem Kazkaz, Jared A. Kofron, Callum Lamb, Benjamin H. Laroque & 24 others Eric Machado, Elizabeth L. McBride, Michael L. Miller, Benjamin Monreal, Prajwal Mohanmurthy, James A. Nikkel, Noah S. Oblath, Walter C. Pettus, R. G.Hamish Robertson, Leslie J. Rosenberg, Gray Rybka, Devyn Rysewyk, Luis Saldaña, Penny L. Slocum, Matthew G. Sternberg, Jonathan R. Tedeschi, Thomas Thümmler, Brent A. Vandevender, Laura E. Vertatschitsch, Megan Wachtendonk, Jonathan Weintroub, Natasha L. Woods, André Young, Evan M. Zayas

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range with O(eV) resolution. A lower bound of m(νe) ≳ 9(0.1) meV is set by observations of neutrino oscillations, while the KATRIN experiment-the current-generation tritium beta-decay experiment that is based on magnetic adiabatic collimation with an electrostatic (MAC-E) filter-will achieve a sensitivity of m(νe) ≲ 0.2 eV. The CRES technique aims to avoid the difficulties in scaling up a MAC-E filter-based experiment to achieve a lower mass sensitivity. In this paper we review the current status of the CRES technique and describe Project 8, a phased absolute neutrino mass experiment that has the potential to reach sensitivities down to m(νe) ≲ 40 meV using an atomic tritium source.

Original languageEnglish (US)
Article number054004
JournalJournal of Physics G: Nuclear and Particle Physics
Volume44
Issue number5
DOIs
StatePublished - Mar 30 2017

Fingerprint

cyclotron radiation
neutrinos
tritium
collimation
radiation
spectroscopy
electrostatics
filters
sensitivity
decay
scaling
oscillations
probes

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Cite this

Esfahani, Ali Ashtari ; Asner, David M. ; Böser, Sebastian ; Cervantes, Raphael ; Claessens, Christine ; de Viveiros, Luiz ; Doe, Peter J. ; Doeleman, Shepard ; Fernandes, Justin L. ; Fertl, Martin ; Finn, Erin C. ; Formaggio, Joseph A. ; Furse, Daniel ; Guigue, Mathieu ; Heeger, Karsten M. ; Jones, A. Mark ; Kazkaz, Kareem ; Kofron, Jared A. ; Lamb, Callum ; Laroque, Benjamin H. ; Machado, Eric ; McBride, Elizabeth L. ; Miller, Michael L. ; Monreal, Benjamin ; Mohanmurthy, Prajwal ; Nikkel, James A. ; Oblath, Noah S. ; Pettus, Walter C. ; Robertson, R. G.Hamish ; Rosenberg, Leslie J. ; Rybka, Gray ; Rysewyk, Devyn ; Saldaña, Luis ; Slocum, Penny L. ; Sternberg, Matthew G. ; Tedeschi, Jonathan R. ; Thümmler, Thomas ; Vandevender, Brent A. ; Vertatschitsch, Laura E. ; Wachtendonk, Megan ; Weintroub, Jonathan ; Woods, Natasha L. ; Young, André ; Zayas, Evan M. / Determining the neutrino mass with cyclotron radiation emission spectroscopy - Project 8. In: Journal of Physics G: Nuclear and Particle Physics. 2017 ; Vol. 44, No. 5.
@article{cf568fe2a5e24ba09c5a42001ded4b2c,
title = "Determining the neutrino mass with cyclotron radiation emission spectroscopy - Project 8",
abstract = "The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range with O(eV) resolution. A lower bound of m(νe) ≳ 9(0.1) meV is set by observations of neutrino oscillations, while the KATRIN experiment-the current-generation tritium beta-decay experiment that is based on magnetic adiabatic collimation with an electrostatic (MAC-E) filter-will achieve a sensitivity of m(νe) ≲ 0.2 eV. The CRES technique aims to avoid the difficulties in scaling up a MAC-E filter-based experiment to achieve a lower mass sensitivity. In this paper we review the current status of the CRES technique and describe Project 8, a phased absolute neutrino mass experiment that has the potential to reach sensitivities down to m(νe) ≲ 40 meV using an atomic tritium source.",
author = "Esfahani, {Ali Ashtari} and Asner, {David M.} and Sebastian B{\"o}ser and Raphael Cervantes and Christine Claessens and {de Viveiros}, Luiz and Doe, {Peter J.} and Shepard Doeleman and Fernandes, {Justin L.} and Martin Fertl and Finn, {Erin C.} and Formaggio, {Joseph A.} and Daniel Furse and Mathieu Guigue and Heeger, {Karsten M.} and Jones, {A. Mark} and Kareem Kazkaz and Kofron, {Jared A.} and Callum Lamb and Laroque, {Benjamin H.} and Eric Machado and McBride, {Elizabeth L.} and Miller, {Michael L.} and Benjamin Monreal and Prajwal Mohanmurthy and Nikkel, {James A.} and Oblath, {Noah S.} and Pettus, {Walter C.} and Robertson, {R. G.Hamish} and Rosenberg, {Leslie J.} and Gray Rybka and Devyn Rysewyk and Luis Salda{\~n}a and Slocum, {Penny L.} and Sternberg, {Matthew G.} and Tedeschi, {Jonathan R.} and Thomas Th{\"u}mmler and Vandevender, {Brent A.} and Vertatschitsch, {Laura E.} and Megan Wachtendonk and Jonathan Weintroub and Woods, {Natasha L.} and Andr{\'e} Young and Zayas, {Evan M.}",
year = "2017",
month = "3",
day = "30",
doi = "10.1088/1361-6471/aa5b4f",
language = "English (US)",
volume = "44",
journal = "Journal of Physics G: Nuclear and Particle Physics",
issn = "0954-3899",
publisher = "IOP Publishing Ltd.",
number = "5",

}

Esfahani, AA, Asner, DM, Böser, S, Cervantes, R, Claessens, C, de Viveiros, L, Doe, PJ, Doeleman, S, Fernandes, JL, Fertl, M, Finn, EC, Formaggio, JA, Furse, D, Guigue, M, Heeger, KM, Jones, AM, Kazkaz, K, Kofron, JA, Lamb, C, Laroque, BH, Machado, E, McBride, EL, Miller, ML, Monreal, B, Mohanmurthy, P, Nikkel, JA, Oblath, NS, Pettus, WC, Robertson, RGH, Rosenberg, LJ, Rybka, G, Rysewyk, D, Saldaña, L, Slocum, PL, Sternberg, MG, Tedeschi, JR, Thümmler, T, Vandevender, BA, Vertatschitsch, LE, Wachtendonk, M, Weintroub, J, Woods, NL, Young, A & Zayas, EM 2017, 'Determining the neutrino mass with cyclotron radiation emission spectroscopy - Project 8', Journal of Physics G: Nuclear and Particle Physics, vol. 44, no. 5, 054004. https://doi.org/10.1088/1361-6471/aa5b4f

Determining the neutrino mass with cyclotron radiation emission spectroscopy - Project 8. / Esfahani, Ali Ashtari; Asner, David M.; Böser, Sebastian; Cervantes, Raphael; Claessens, Christine; de Viveiros, Luiz; Doe, Peter J.; Doeleman, Shepard; Fernandes, Justin L.; Fertl, Martin; Finn, Erin C.; Formaggio, Joseph A.; Furse, Daniel; Guigue, Mathieu; Heeger, Karsten M.; Jones, A. Mark; Kazkaz, Kareem; Kofron, Jared A.; Lamb, Callum; Laroque, Benjamin H.; Machado, Eric; McBride, Elizabeth L.; Miller, Michael L.; Monreal, Benjamin; Mohanmurthy, Prajwal; Nikkel, James A.; Oblath, Noah S.; Pettus, Walter C.; Robertson, R. G.Hamish; Rosenberg, Leslie J.; Rybka, Gray; Rysewyk, Devyn; Saldaña, Luis; Slocum, Penny L.; Sternberg, Matthew G.; Tedeschi, Jonathan R.; Thümmler, Thomas; Vandevender, Brent A.; Vertatschitsch, Laura E.; Wachtendonk, Megan; Weintroub, Jonathan; Woods, Natasha L.; Young, André; Zayas, Evan M.

In: Journal of Physics G: Nuclear and Particle Physics, Vol. 44, No. 5, 054004, 30.03.2017.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Determining the neutrino mass with cyclotron radiation emission spectroscopy - Project 8

AU - Esfahani, Ali Ashtari

AU - Asner, David M.

AU - Böser, Sebastian

AU - Cervantes, Raphael

AU - Claessens, Christine

AU - de Viveiros, Luiz

AU - Doe, Peter J.

AU - Doeleman, Shepard

AU - Fernandes, Justin L.

AU - Fertl, Martin

AU - Finn, Erin C.

AU - Formaggio, Joseph A.

AU - Furse, Daniel

AU - Guigue, Mathieu

AU - Heeger, Karsten M.

AU - Jones, A. Mark

AU - Kazkaz, Kareem

AU - Kofron, Jared A.

AU - Lamb, Callum

AU - Laroque, Benjamin H.

AU - Machado, Eric

AU - McBride, Elizabeth L.

AU - Miller, Michael L.

AU - Monreal, Benjamin

AU - Mohanmurthy, Prajwal

AU - Nikkel, James A.

AU - Oblath, Noah S.

AU - Pettus, Walter C.

AU - Robertson, R. G.Hamish

AU - Rosenberg, Leslie J.

AU - Rybka, Gray

AU - Rysewyk, Devyn

AU - Saldaña, Luis

AU - Slocum, Penny L.

AU - Sternberg, Matthew G.

AU - Tedeschi, Jonathan R.

AU - Thümmler, Thomas

AU - Vandevender, Brent A.

AU - Vertatschitsch, Laura E.

AU - Wachtendonk, Megan

AU - Weintroub, Jonathan

AU - Woods, Natasha L.

AU - Young, André

AU - Zayas, Evan M.

PY - 2017/3/30

Y1 - 2017/3/30

N2 - The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range with O(eV) resolution. A lower bound of m(νe) ≳ 9(0.1) meV is set by observations of neutrino oscillations, while the KATRIN experiment-the current-generation tritium beta-decay experiment that is based on magnetic adiabatic collimation with an electrostatic (MAC-E) filter-will achieve a sensitivity of m(νe) ≲ 0.2 eV. The CRES technique aims to avoid the difficulties in scaling up a MAC-E filter-based experiment to achieve a lower mass sensitivity. In this paper we review the current status of the CRES technique and describe Project 8, a phased absolute neutrino mass experiment that has the potential to reach sensitivities down to m(νe) ≲ 40 meV using an atomic tritium source.

AB - The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range with O(eV) resolution. A lower bound of m(νe) ≳ 9(0.1) meV is set by observations of neutrino oscillations, while the KATRIN experiment-the current-generation tritium beta-decay experiment that is based on magnetic adiabatic collimation with an electrostatic (MAC-E) filter-will achieve a sensitivity of m(νe) ≲ 0.2 eV. The CRES technique aims to avoid the difficulties in scaling up a MAC-E filter-based experiment to achieve a lower mass sensitivity. In this paper we review the current status of the CRES technique and describe Project 8, a phased absolute neutrino mass experiment that has the potential to reach sensitivities down to m(νe) ≲ 40 meV using an atomic tritium source.

UR - http://www.scopus.com/inward/record.url?scp=85018506752&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85018506752&partnerID=8YFLogxK

U2 - 10.1088/1361-6471/aa5b4f

DO - 10.1088/1361-6471/aa5b4f

M3 - Article

VL - 44

JO - Journal of Physics G: Nuclear and Particle Physics

JF - Journal of Physics G: Nuclear and Particle Physics

SN - 0954-3899

IS - 5

M1 - 054004

ER -