TY - GEN
T1 - Development and application of a hybrid transport methodology for active interrogation systems
AU - Royston, Katherine
AU - Walters, William
AU - Haghighat, Alireza
AU - Yi, Ce
AU - Sjoden, Glenn
PY - 2013
Y1 - 2013
N2 - A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, 7) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water cargo. To complete the first step, a response-function formulation has been developed to calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, 7) cross sections to find the resulting gamma source distribution. In the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma current at a detector window. The AIMS (Active Interrogation for Monitoring Special-Nuclear-Materials) software has been written to output the gamma current for a source-detector assembly scanning across a cargo container using the pre-calculated values and taking significantly less time than a reference MCNP5 calculation.
AB - A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, 7) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water cargo. To complete the first step, a response-function formulation has been developed to calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, 7) cross sections to find the resulting gamma source distribution. In the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma current at a detector window. The AIMS (Active Interrogation for Monitoring Special-Nuclear-Materials) software has been written to output the gamma current for a source-detector assembly scanning across a cargo container using the pre-calculated values and taking significantly less time than a reference MCNP5 calculation.
UR - http://www.scopus.com/inward/record.url?scp=84883428154&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883428154&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84883428154
SN - 9781627486439
T3 - International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2013
SP - 761
EP - 775
BT - International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2013
T2 - International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2013
Y2 - 5 May 2013 through 9 May 2013
ER -