Development and evaluation of occupancy-aware HVAC control for residential building energy efficiency and occupant comfort

Christina Turley, Margarite Jacoby, Gregory Pavlak, Gregor Henze

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Occupancy-aware heating, ventilation, and air conditioning (HVAC) control offers the opportunity to reduce energy use without sacrificing thermal comfort. Residential HVAC systems often use manually-adjusted or constant setpoint temperatures, which heat and cool the house regardless of whether it is needed. By incorporating occupancy-awareness into HVAC control, heating and cooling can be used for only those time periods it is needed. Yet, bringing this technology to fruition is dependent on accurately predicting occupancy. Non-probabilistic prediction models offer an opportunity to use collected occupancy data to predict future occupancy profiles. Smart devices, such as a connected thermostat, which already include occupancy sensors, can be used to provide a continually growing collection of data that can then be harnessed for short-term occupancy prediction by compiling and creating a binary occupancy prediction. Real occupancy data from six homes located in Colorado is analyzed and investigated using this occupancy prediction model. Results show that non-probabilistic occupancy models in combination with occupancy sensors can be combined to provide a hybrid HVAC control with savings on average of 5.0% and without degradation of thermal comfort. Model predictive control provides further opportunities, with the ability to adjust the relative importance between thermal comfort and energy savings to achieve savings between 1% and 13.3% depending on the relative weighting between thermal comfort and energy savings. In all cases, occupancy prediction allows the opportunity for a more intelligent and optimized strategy to residential HVAC control.

Original languageEnglish (US)
Article number5396
JournalEnergies
Volume13
Issue number20
DOIs
StatePublished - Oct 15 2020

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Development and evaluation of occupancy-aware HVAC control for residential building energy efficiency and occupant comfort'. Together they form a unique fingerprint.

Cite this