Abstract
We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.
Original language | English (US) |
---|---|
Article number | 116 |
Journal | European Physical Journal C |
Volume | 75 |
Issue number | 3 |
DOIs | |
State | Published - 2015 |
All Science Journal Classification (ASJC) codes
- Engineering (miscellaneous)
- Physics and Astronomy (miscellaneous)
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube: IceCube Collaboration'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube : IceCube Collaboration. / Aartsen, M. G.; Ackermann, M.; Adams, J. et al.
In: European Physical Journal C, Vol. 75, No. 3, 116, 2015.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube
T2 - IceCube Collaboration
AU - Aartsen, M. G.
AU - Ackermann, M.
AU - Adams, J.
AU - Aguilar, J. A.
AU - Ahlers, M.
AU - Ahrens, M.
AU - Altmann, D.
AU - Anderson, T.
AU - Arguelles, C.
AU - Arlen, T. C.
AU - Auffenberg, J.
AU - Bai, X.
AU - Barwick, S. W.
AU - Baum, V.
AU - Beatty, J. J.
AU - Tjus, J. Becker
AU - Becker, K. H.
AU - BenZvi, S.
AU - Berghaus, P.
AU - Berley, D.
AU - Bernardini, E.
AU - Bernhard, A.
AU - Besson, D. Z.
AU - Binder, G.
AU - Bindig, D.
AU - Bissok, M.
AU - Blaufuss, E.
AU - Blumenthal, J.
AU - Boersma, D. J.
AU - Bohm, C.
AU - Bos, F.
AU - Bose, D.
AU - Böser, S.
AU - Botner, O.
AU - Brayeur, L.
AU - Bretz, H. P.
AU - Brown, A. M.
AU - Casey, J.
AU - Casier, M.
AU - Cheung, E.
AU - Chirkin, D.
AU - Christov, A.
AU - Christy, B.
AU - Clark, K.
AU - Classen, L.
AU - Clevermann, F.
AU - Coenders, S.
AU - Cowen, D. F.
AU - Cruz Silva, A. H.
AU - Danninger, M.
AU - Daughhetee, J.
AU - Davis, J. C.
AU - Day, M.
AU - de André, J. P.A.M.
AU - De Clercq, C.
AU - De Ridder, S.
AU - Desiati, P.
AU - de Vries, K. D.
AU - de With, M.
AU - DeYoung, T.
AU - Díaz-Vélez, J. C.
AU - Dunkman, M.
AU - Eagan, R.
AU - Eberhardt, B.
AU - Eichmann, B.
AU - Eisch, J.
AU - Euler, S.
AU - Evenson, P. A.
AU - Fadiran, O.
AU - Fazely, A. R.
AU - Fedynitch, A.
AU - Feintzeig, J.
AU - Felde, J.
AU - Feusels, T.
AU - Filimonov, K.
AU - Finley, C.
AU - Fischer-Wasels, T.
AU - Flis, S.
AU - Franckowiak, A.
AU - Frantzen, K.
AU - Fuchs, T.
AU - Gaisser, T. K.
AU - Gaior, R.
AU - Gallagher, J.
AU - Gerhardt, L.
AU - Gier, D.
AU - Gladstone, L.
AU - Glüsenkamp, T.
AU - Goldschmidt, A.
AU - Golup, G.
AU - Gonzalez, J. G.
AU - Goodman, J. A.
AU - Góra, D.
AU - Grant, D.
AU - Gretskov, P.
AU - Groh, J. C.
AU - Groß, A.
AU - Ha, C.
AU - Haack, C.
AU - Haj Ismail, A.
AU - Hallen, P.
AU - Hallgren, A.
AU - Halzen, F.
AU - Hanson, K.
AU - Hebecker, D.
AU - Heereman, D.
AU - Heinen, D.
AU - Helbing, K.
AU - Hellauer, R.
AU - Hellwig, D.
AU - Hickford, S.
AU - Hill, G. C.
AU - Hoffman, K. D.
AU - Hoffmann, R.
AU - Homeier, A.
AU - Hoshina, K.
AU - Huang, F.
AU - Huelsnitz, W.
AU - Hulth, P. O.
AU - Hultqvist, K.
AU - Hussain, S.
AU - Ishihara, A.
AU - Jacobi, E.
AU - Jacobsen, J.
AU - Jagielski, K.
AU - Japaridze, G. S.
AU - Jero, K.
AU - Jlelati, O.
AU - Jurkovic, M.
AU - Kaminsky, B.
AU - Kappes, A.
AU - Karg, T.
AU - Karle, A.
AU - Kauer, M.
AU - Keivani, A.
AU - Kelley, J. L.
AU - Kheirandish, A.
AU - Kiryluk, J.
AU - Kläs, J.
AU - Klein, S. R.
AU - Köhne, J. H.
AU - Kohnen, G.
AU - Kolanoski, H.
AU - Koob, A.
AU - Köpke, L.
AU - Kopper, C.
AU - Kopper, S.
AU - Koskinen, D. J.
AU - Kowalski, M.
AU - Kriesten, A.
AU - Krings, K.
AU - Kroll, G.
AU - Kroll, M.
AU - Kunnen, J.
AU - Kurahashi, N.
AU - Kuwabara, T.
AU - Labare, M.
AU - Larsen, D. T.
AU - Larson, M. J.
AU - Lesiak-Bzdak, M.
AU - Leuermann, M.
AU - Leute, J.
AU - Lünemann, J.
AU - Madsen, J.
AU - Maggi, G.
AU - Maruyama, R.
AU - Mase, K.
AU - Matis, H. S.
AU - Maunu, R.
AU - McNally, F.
AU - Meagher, K.
AU - Medici, M.
AU - Meli, A.
AU - Meures, T.
AU - Miarecki, S.
AU - Middell, E.
AU - Middlemas, E.
AU - Milke, N.
AU - Miller, J.
AU - Mohrmann, L.
AU - Montaruli, T.
AU - Morse, R.
AU - Nahnhauer, R.
AU - Naumann, U.
AU - Niederhausen, H.
AU - Nowicki, S. C.
AU - Nygren, D. R.
AU - Obertacke, A.
AU - Odrowski, S.
AU - Olivas, A.
AU - Omairat, A.
AU - O’Murchadha, A.
AU - Palczewski, T.
AU - Paul, L.
AU - Penek,
AU - Pepper, J. A.
AU - Pérez de los Heros, C.
AU - Pfendner, C.
AU - Pieloth, D.
AU - Pinat, E.
AU - Posselt, J.
AU - Price, P. B.
AU - Przybylski, G. T.
AU - Pütz, J.
AU - Quinnan, M.
AU - Rädel, L.
AU - Rameez, M.
AU - Rawlins, K.
AU - Redl, P.
AU - Rees, I.
AU - Reimann, R.
AU - Relich, M.
AU - Resconi, E.
AU - Rhode, W.
AU - Richman, M.
AU - Riedel, B.
AU - Robertson, S.
AU - Rodrigues, J. P.
AU - Rongen, M.
AU - Rott, C.
AU - Ruhe, T.
AU - Ruzybayev, B.
AU - Ryckbosch, D.
AU - Saba, S. M.
AU - Sander, H. G.
AU - Sandroos, J.
AU - Santander, M.
AU - Sarkar, S.
AU - Schatto, K.
AU - Scheriau, F.
AU - Schmidt, T.
AU - Schmitz, M.
AU - Schoenen, S.
AU - Schöneberg, S.
AU - Schönwald, A.
AU - Schukraft, A.
AU - Schulte, L.
AU - Schulz, O.
AU - Seckel, D.
AU - Sestayo, Y.
AU - Seunarine, S.
AU - Shanidze, R.
AU - Smith, M. W.E.
AU - Soldin, D.
AU - Spiczak, G. M.
AU - Spiering, C.
AU - Stamatikos, M.
AU - Stanev, T.
AU - Stanisha, N. A.
AU - Stasik, A.
AU - Stezelberger, T.
AU - Stokstad, R. G.
AU - Stößl, A.
AU - Strahler, E. A.
AU - Ström, R.
AU - Strotjohann, N. L.
AU - Sullivan, G. W.
AU - Taavola, H.
AU - Taboada, I.
AU - Tamburro, A.
AU - Tepe, A.
AU - Ter-Antonyan, S.
AU - Terliuk, A.
AU - Tešić, G.
AU - Tilav, S.
AU - Toale, P. A.
AU - Tobin, M. N.
AU - Tosi, D.
AU - Tselengidou, M.
AU - Unger, E.
AU - Usner, M.
AU - Vallecorsa, S.
AU - van Eijndhoven, N.
AU - Vandenbroucke, J.
AU - van Santen, J.
AU - Vehring, M.
AU - Voge, M.
AU - Vraeghe, M.
AU - Walck, C.
AU - Wallraff, M.
AU - Weaver, Ch
AU - Wellons, M.
AU - Wendt, C.
AU - Westerhoff, S.
AU - Whelan, B. J.
AU - Whitehorn, N.
AU - Wichary, C.
AU - Wiebe, K.
AU - Wiebusch, C. H.
AU - Williams, D. R.
AU - Wissing, H.
AU - Wolf, M.
AU - Wood, T. R.
AU - Woschnagg, K.
AU - Xu, D. L.
AU - Xu, X. W.
AU - Yanez, J. P.
AU - Yodh, G.
AU - Yoshida, S.
AU - Zarzhitsky, P.
AU - Ziemann, J.
AU - Zierke, S.
AU - Zoll, M.
AU - Morik, K.
N1 - Funding Information: We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF). Publisher Copyright: © 2015, The Author(s).
PY - 2015
Y1 - 2015
N2 - We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.
AB - We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.
UR - http://www.scopus.com/inward/record.url?scp=84924975571&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84924975571&partnerID=8YFLogxK
U2 - 10.1140/epjc/s10052-015-3330-z
DO - 10.1140/epjc/s10052-015-3330-z
M3 - Article
C2 - 25995705
AN - SCOPUS:84924975571
SN - 1434-6044
VL - 75
JO - European Physical Journal C
JF - European Physical Journal C
IS - 3
M1 - 116
ER -