Development of a resonant actuation system for active flap rotors

Jun Sik Kim, K. W. Wang, Edward C. Smith

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

A resonant actuation system for active flap rotors is developed and evaluated experimentally. The concept involves deflecting each individual trailing-edge flap using a compact resonant piezoelectric actuation system. Each resonant actuation system yields high authority, while operating at a single frequency. By tailoring the natural frequencies of the actuation system (including the piezoelectric actuator and the related mechanical and electrical elements) to the required operating frequencies, one can increase the output authority. Robustness of the device can be enhanced by increasing the high authority bandwidth through electric circuitry design. Such a resonant actuation system (RAS) is analyzed for a full-scale piezoelectric induced-shear tube actuator and bench top testing is conducted to validate the concept. An adaptive feedforward controller is developed to realize the electric network dynamics and to adapt the phase variation. The control strategy is then implemented via a DSP (Digital Signal Processor) system. Analysis is also performed to examine the system dynamics in forward flight with piezoelectric resonant actuators, using a perturbation method to evaluate the system's time-varying characteristics. Numerical simulations reveal that the resonant actuator concept can be applied to forward flights as well as to hover conditions.

Original languageEnglish (US)
Title of host publication61st American Helicopter Society International Annual Forum 2005
Pages1960-1970
Number of pages11
StatePublished - 2005
Event61st American Helicopter Society International Annual Forum 2005 - Grapevine, TX, United States
Duration: Jun 1 2005Jun 3 2005

Publication series

NameAnnual Forum Proceedings - AHS International
Volume3
ISSN (Print)1552-2938

Other

Other61st American Helicopter Society International Annual Forum 2005
CountryUnited States
CityGrapevine, TX
Period6/1/056/3/05

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint Dive into the research topics of 'Development of a resonant actuation system for active flap rotors'. Together they form a unique fingerprint.

Cite this