Developmental regulation of phospholipid secretion by fetal type II pneumocytes

Mitchell J. Kresch, David M. Lima, Hsienwie Lu

Research output: Contribution to journalArticle

13 Scopus citations

Abstract

Surfactant sufficiency is dependent upon adequate synthesis and secretion of surfactant by the type II alveolar epithelium. Our laboratory has previously shown that basal secretion of surfactant phospholipid by differentiated fetal type II cells is lower than the basal secretion by adult cells. The purposes of this study were to determine if undifferentiated fetal type II cells can secrete phosphatidylcholine, to determine if terbutaline, a β-adrenergic agonist, stimulates secretion of surfactant phospholipids by undifferentiated fetal cells and to examine the effects of differentiation on secretion of surfactant phospholipids by fetal cells. Constitutive (basal) secretion of phosphatidylcholine increased linearly as a function of time in both undifferentiated and differentiated cells, but the rate of secretion was greater in differentiated cells than the rate of secretion in undifferentiated cells. Terbutaline caused a concentration-dependent increase in secretion in both undifferentiated and differentiated cells. Maximal effective concentration and EC50 were similar for undifferentiated (10-6 M, 0.2 μM) and differentiated (10-5 M, 0.3 μM) cells. The relative stimulation of secretion above control values was greater for undifferentiated cells. The kinetics of terbutaline stimulation varied significantly with cellular differentiation. Terbutaline resulted in 230% stimulation of secretion in undifferentiated cells at 30 min followed by a decline in the response to terbutaline at 60 to 120 min. In contrast, terbutaline stimulated secretion by differentiated cells showed a sustained linear increase from 0 to 120 min. This regulation of stimulated secretion is not present in undifferentiated cells. We conclude that undifferentiated type II cells are capable of the secretion of phosphatidylcholine and that terbutaline stimulates secretion by undifferentiated cells. Furthermore, basal secretion increases as a function of differentiation of type II cells and the regulation of stimulated secretion seen in differentiated cells is not developed in undifferentiated cells. The developmental regulation of the secretion of surfactant is complex and probably involves both excitatory as well as inhibitory mechanisms which develop at different stages of differentiation of the type II cell.

Original languageEnglish (US)
Pages (from-to)39-46
Number of pages8
JournalBiochimica et Biophysica Acta - Lipids and Lipid Metabolism
Volume1299
Issue number1
DOIs
Publication statusPublished - Jan 1 1996

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Endocrinology

Cite this