Device circuit Co design of FEFET based logic for low voltage processors

Sumitha George, Ahmedullah Aziz, Xueqing Li, Moon Seok Kim, Suman Datta, John Sampson, Sumeet Gupta, Vijaykrishnan Narayanan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

33 Scopus citations

Abstract

Ferroelectric FETs (FEFETs) are emerging devices with potential for low power applications. The unique feature which makes these devices suitable for ultra-low voltage operation is the steep slope achieved by negative capacitance of the ferroelectric oxide based gate stack. This property is being actively explored to overcome the fundamental 60 mV/decade sub threshold swing limit associated with conventional MOSFETs. In this paper, we focus on the circuit implications of the steep slope behavior of the FEFETs. We analyze the characteristics of FEFETs to get insights into their performance, and show both higher ON current and higher gate capacitance compared to standard transistors. We design and simulate a ring oscillator and a Kogge Stone adder using FEFET devices and evaluate the impact of ferroelectric layer thickness on the performance. Our analysis shows that FEFET based circuits consume lower energy compared to CMOS circuits at VDD.

Original languageEnglish (US)
Title of host publicationProceedings - IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2016
PublisherIEEE Computer Society
Pages649-654
Number of pages6
ISBN (Electronic)9781467390385
DOIs
StatePublished - Sep 2 2016
Event15th IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2016 - Pittsburgh, United States
Duration: Jul 11 2016Jul 13 2016

Publication series

NameProceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI
Volume2016-September
ISSN (Print)2159-3469
ISSN (Electronic)2159-3477

Other

Other15th IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2016
Country/TerritoryUnited States
CityPittsburgh
Period7/11/167/13/16

All Science Journal Classification (ASJC) codes

  • Hardware and Architecture
  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Device circuit Co design of FEFET based logic for low voltage processors'. Together they form a unique fingerprint.

Cite this