Diagnosis, tuning, and redesign for multicore performance: A case study of the fast multipole method

Aparna Chandramowlishwaran, Kamesh Madduri, Richard Vuduc

Research output: Chapter in Book/Report/Conference proceedingConference contribution

28 Scopus citations

Abstract

Given a program and a multisocket, multicore system, what is the process by which one understands and improves its performance and scalability? We describe an approach in the context of improving within-node scalability of the fast multipole method (FMM). Our process consists of a systematic sequence of modeling, analysis, and tuning steps, beginning with simple models, and gradually increasing their complexity in the quest for deeper performance understanding and better scalability. For the FMM, we significantly improve within-node scalability; for example, on a quad-socket Intel Nehalem-EX system, we show speedups of 1.7× over the previous best multithreaded implementation, 19.3× over a sequential but highly tuned (e.g., SIMD-vectorized) code, and match or outperform a state-ofthe-art GPGPU implementation. Our study sheds new light on the form of a more general performance analysis and tuning process that other multicore/manycore tuning practitioners (end-user programmers) and automated performance analysis and tuning tools could themselves apply.

Original languageEnglish (US)
Title of host publication2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2010
DOIs
StatePublished - 2010
Event2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2010 - New Orleans, LA, United States
Duration: Nov 13 2010Nov 19 2010

Publication series

Name2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2010

Other

Other2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2010
Country/TerritoryUnited States
CityNew Orleans, LA
Period11/13/1011/19/10

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'Diagnosis, tuning, and redesign for multicore performance: A case study of the fast multipole method'. Together they form a unique fingerprint.

Cite this