TY - JOUR
T1 - Differences in regulatory sequences of naturally occurring JC virus variants
AU - Martin, J. D.
AU - King, D. M.
AU - Slauch, J. M.
AU - Frisque, R. J.
PY - 1985
Y1 - 1985
N2 - The regulatory region was sequenced for DNAs representative of seven independent isolates of JC virus, the probable agent of progressive multifocal leukoencephalopathy. The isolates included an oncogenic variant (MAD-4), an antigenic variant (MAD-11), and two different isolates derived from the urine (MAD-7) and from the brain (MAD-8) of the same patient. The representative DNAs were molecularly cloned directly from diseased brain tissue and from human fetal glial cells infected with the corresponding isolated viruses. The regulatory sequences of these DNAs were compared with those of the prototype isolate, MAD-1, sequenced previously (R.J. Frisque, J. Virol. 46:170-176, 1983). We found that the regulatory region of JC viral DNA is highly variable due to complex alterations of the previously described 98-base-pair repeat of MAD-1 DNA. On the basis of these alterations, there are two general types of JC virus. There were no consistent alterations in regulatory sequences which could distinguish brain tissue DNAs from tissue culture DNAs. Furthermore, for each isolate except MAD-1 (R.J. Frisque, J. Virol. 46:170-176, 1983), the regulatory regions of brain tissue and tissue culture DNAs were not identical. The arrangement, sequence, or both of potential regulatory elements (TATA sequence, GGGXGGPuPu, tandem repeats) of JC viral DNAs are sufficiently different from those in other viral and eucaryotic systems that they may effect the unique properties of this slow virus.
AB - The regulatory region was sequenced for DNAs representative of seven independent isolates of JC virus, the probable agent of progressive multifocal leukoencephalopathy. The isolates included an oncogenic variant (MAD-4), an antigenic variant (MAD-11), and two different isolates derived from the urine (MAD-7) and from the brain (MAD-8) of the same patient. The representative DNAs were molecularly cloned directly from diseased brain tissue and from human fetal glial cells infected with the corresponding isolated viruses. The regulatory sequences of these DNAs were compared with those of the prototype isolate, MAD-1, sequenced previously (R.J. Frisque, J. Virol. 46:170-176, 1983). We found that the regulatory region of JC viral DNA is highly variable due to complex alterations of the previously described 98-base-pair repeat of MAD-1 DNA. On the basis of these alterations, there are two general types of JC virus. There were no consistent alterations in regulatory sequences which could distinguish brain tissue DNAs from tissue culture DNAs. Furthermore, for each isolate except MAD-1 (R.J. Frisque, J. Virol. 46:170-176, 1983), the regulatory regions of brain tissue and tissue culture DNAs were not identical. The arrangement, sequence, or both of potential regulatory elements (TATA sequence, GGGXGGPuPu, tandem repeats) of JC viral DNAs are sufficiently different from those in other viral and eucaryotic systems that they may effect the unique properties of this slow virus.
UR - http://www.scopus.com/inward/record.url?scp=0021995514&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0021995514&partnerID=8YFLogxK
U2 - 10.1128/jvi.53.1.306-311.1985
DO - 10.1128/jvi.53.1.306-311.1985
M3 - Article
C2 - 2981353
AN - SCOPUS:0021995514
SN - 0022-538X
VL - 53
SP - 306
EP - 311
JO - Journal of Virology
JF - Journal of Virology
IS - 1
ER -