Abstract

Recent work has identified nonlinear deterministic structure in neuronal dynamics using periodic orbit theory. Troublesome in this work were the significant periods of time where no periodic orbits were extracted - "dynamically dark" regions. Tests for periodic orbit structure typically require that the underlying dynamics are differentiable. Since continuity of a mathematical function is a necessary but insufficient condition for differentiability, regions of observed differentiability should be fully contained within regions of continuity. We here verify that this fundamental mathematical principle is reflected in observations from mammalian neuronal activity. First, we introduce a null Jacobian transformation to verify the observation of differentiable dynamics when periodic orbits are extracted. Second, we show that a less restrictive test for deterministic structure requiring only continuity demonstrates widespread nonlinear deterministic structure only partially appreciated with previous approaches.

Original languageEnglish (US)
Pages (from-to)175-181
Number of pages7
JournalPhysica D: Nonlinear Phenomena
Volume148
Issue number1-2
DOIs
StatePublished - Jan 1 2001

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • Condensed Matter Physics
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Differentiability implies continuity in neuronal dynamics'. Together they form a unique fingerprint.

  • Cite this