Differential effect of sepsis on ability of leucine and IGF-I to stimulate muscle translation initiation

Charles H. Lang, Robert A. Frost

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

Polymicrobial sepsis impairs skeletal muscle protein synthesis, which results from impairment in translation initiation under basal conditions. The purpose of the present study was to test the hypothesis that sepsis also impairs the anabolic response to amino acids, specifically leucine (Leu). Sepsis was induced by cecal ligation and puncture, and 24 h later, Leu or saline (Sal) was orally administered to septic and time-matched nonseptic rats. The gastrocnemius was removed 20 min later for assessment of protein synthesis and signaling components important in peptide-chain initiation. Oral Leu increased muscle protein synthesis in nonseptic rats. Leu was unable to increase protein synthesis in muscle from septic rats, and synthetic rates remained below those observed in nonseptic + Sal rats. In nonseptic + Leu rats, phosphorylation of eukaryotic initiation factor (eIF)4E-binding protein 1 (4E-BP1) in muscle was markedly increased compared with values from time-matched Sal-treated nonseptic rats. This change was associated with redistribution of eIF4E from the inactive eIF4E·4E-BP1 to the active eIF4E·eIF4G complex. In septic rats, Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E distribution were completely abrogated. Sepsis also antagonized the Leu-induced increase in phosphorylation of S6 kinase 1 and ribosomal protein S6. Sepsis attenuated Leu-induced phosphorylation of mammalian target of rapamycin and eIF4G. The ability of sepsis to inhibit anabolic effects of Leu could not be attributed to differences in plasma concentrations of insulin, insulin-like growth factor I, or Leu between groups. In contrast, the ability of exogenous insulin-like growth factor I to stimulate the same signaling components pertaining to translation initiation was not impaired by sepsis. Hence, sepsis produces a relatively specific Leu resistance in skeletal muscle that impairs the ability of this amino acid to stimulate translation initiation and protein synthesis.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Volume287
Issue number4 50-4
DOIs
StatePublished - Oct 1 2004

Fingerprint

Insulin-Like Growth Factor I
Leucine
Sepsis
Muscles
Phosphorylation
Ribosomal Protein S6 Kinases
Muscle Proteins
Skeletal Muscle
Translational Peptide Chain Initiation
Anabolic Agents
Amino Acids
Sirolimus
Punctures
Ligation
Carrier Proteins
Proteins
Insulin
Peptides

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Physiology
  • Physiology (medical)

Cite this

@article{a2d925d617754f61bbba271b8b2a6fab,
title = "Differential effect of sepsis on ability of leucine and IGF-I to stimulate muscle translation initiation",
abstract = "Polymicrobial sepsis impairs skeletal muscle protein synthesis, which results from impairment in translation initiation under basal conditions. The purpose of the present study was to test the hypothesis that sepsis also impairs the anabolic response to amino acids, specifically leucine (Leu). Sepsis was induced by cecal ligation and puncture, and 24 h later, Leu or saline (Sal) was orally administered to septic and time-matched nonseptic rats. The gastrocnemius was removed 20 min later for assessment of protein synthesis and signaling components important in peptide-chain initiation. Oral Leu increased muscle protein synthesis in nonseptic rats. Leu was unable to increase protein synthesis in muscle from septic rats, and synthetic rates remained below those observed in nonseptic + Sal rats. In nonseptic + Leu rats, phosphorylation of eukaryotic initiation factor (eIF)4E-binding protein 1 (4E-BP1) in muscle was markedly increased compared with values from time-matched Sal-treated nonseptic rats. This change was associated with redistribution of eIF4E from the inactive eIF4E·4E-BP1 to the active eIF4E·eIF4G complex. In septic rats, Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E distribution were completely abrogated. Sepsis also antagonized the Leu-induced increase in phosphorylation of S6 kinase 1 and ribosomal protein S6. Sepsis attenuated Leu-induced phosphorylation of mammalian target of rapamycin and eIF4G. The ability of sepsis to inhibit anabolic effects of Leu could not be attributed to differences in plasma concentrations of insulin, insulin-like growth factor I, or Leu between groups. In contrast, the ability of exogenous insulin-like growth factor I to stimulate the same signaling components pertaining to translation initiation was not impaired by sepsis. Hence, sepsis produces a relatively specific Leu resistance in skeletal muscle that impairs the ability of this amino acid to stimulate translation initiation and protein synthesis.",
author = "Lang, {Charles H.} and Frost, {Robert A.}",
year = "2004",
month = "10",
day = "1",
doi = "10.1152/ajpendo.00132.2004",
language = "English (US)",
volume = "287",
journal = "American Journal of Physiology",
issn = "0193-1849",
publisher = "American Physiological Society",
number = "4 50-4",

}

TY - JOUR

T1 - Differential effect of sepsis on ability of leucine and IGF-I to stimulate muscle translation initiation

AU - Lang, Charles H.

AU - Frost, Robert A.

PY - 2004/10/1

Y1 - 2004/10/1

N2 - Polymicrobial sepsis impairs skeletal muscle protein synthesis, which results from impairment in translation initiation under basal conditions. The purpose of the present study was to test the hypothesis that sepsis also impairs the anabolic response to amino acids, specifically leucine (Leu). Sepsis was induced by cecal ligation and puncture, and 24 h later, Leu or saline (Sal) was orally administered to septic and time-matched nonseptic rats. The gastrocnemius was removed 20 min later for assessment of protein synthesis and signaling components important in peptide-chain initiation. Oral Leu increased muscle protein synthesis in nonseptic rats. Leu was unable to increase protein synthesis in muscle from septic rats, and synthetic rates remained below those observed in nonseptic + Sal rats. In nonseptic + Leu rats, phosphorylation of eukaryotic initiation factor (eIF)4E-binding protein 1 (4E-BP1) in muscle was markedly increased compared with values from time-matched Sal-treated nonseptic rats. This change was associated with redistribution of eIF4E from the inactive eIF4E·4E-BP1 to the active eIF4E·eIF4G complex. In septic rats, Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E distribution were completely abrogated. Sepsis also antagonized the Leu-induced increase in phosphorylation of S6 kinase 1 and ribosomal protein S6. Sepsis attenuated Leu-induced phosphorylation of mammalian target of rapamycin and eIF4G. The ability of sepsis to inhibit anabolic effects of Leu could not be attributed to differences in plasma concentrations of insulin, insulin-like growth factor I, or Leu between groups. In contrast, the ability of exogenous insulin-like growth factor I to stimulate the same signaling components pertaining to translation initiation was not impaired by sepsis. Hence, sepsis produces a relatively specific Leu resistance in skeletal muscle that impairs the ability of this amino acid to stimulate translation initiation and protein synthesis.

AB - Polymicrobial sepsis impairs skeletal muscle protein synthesis, which results from impairment in translation initiation under basal conditions. The purpose of the present study was to test the hypothesis that sepsis also impairs the anabolic response to amino acids, specifically leucine (Leu). Sepsis was induced by cecal ligation and puncture, and 24 h later, Leu or saline (Sal) was orally administered to septic and time-matched nonseptic rats. The gastrocnemius was removed 20 min later for assessment of protein synthesis and signaling components important in peptide-chain initiation. Oral Leu increased muscle protein synthesis in nonseptic rats. Leu was unable to increase protein synthesis in muscle from septic rats, and synthetic rates remained below those observed in nonseptic + Sal rats. In nonseptic + Leu rats, phosphorylation of eukaryotic initiation factor (eIF)4E-binding protein 1 (4E-BP1) in muscle was markedly increased compared with values from time-matched Sal-treated nonseptic rats. This change was associated with redistribution of eIF4E from the inactive eIF4E·4E-BP1 to the active eIF4E·eIF4G complex. In septic rats, Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E distribution were completely abrogated. Sepsis also antagonized the Leu-induced increase in phosphorylation of S6 kinase 1 and ribosomal protein S6. Sepsis attenuated Leu-induced phosphorylation of mammalian target of rapamycin and eIF4G. The ability of sepsis to inhibit anabolic effects of Leu could not be attributed to differences in plasma concentrations of insulin, insulin-like growth factor I, or Leu between groups. In contrast, the ability of exogenous insulin-like growth factor I to stimulate the same signaling components pertaining to translation initiation was not impaired by sepsis. Hence, sepsis produces a relatively specific Leu resistance in skeletal muscle that impairs the ability of this amino acid to stimulate translation initiation and protein synthesis.

UR - http://www.scopus.com/inward/record.url?scp=4544362833&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=4544362833&partnerID=8YFLogxK

U2 - 10.1152/ajpendo.00132.2004

DO - 10.1152/ajpendo.00132.2004

M3 - Article

C2 - 15186995

AN - SCOPUS:4544362833

VL - 287

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0193-1849

IS - 4 50-4

ER -