Dimensional renormalization of scalar field theory in curved space-time

Lowell S. Brown, John C. Collins

Research output: Contribution to journalArticle

140 Scopus citations

Abstract

The regularization and renormalization of an interacting scalar field φ in a curved spacetime background is performed by the method of continuation to n dimensions. In addition to the familiar counter terms of the flat-space theory, c-number, “vacuum” counter terms must also be introduced. These involve zero, first, and second powers of the Reimann curvature tensor Rαβψδ. Moreover, the renormalizability of the theory requires that the Lagrange function couple φ2 to the curvature scalar R with a coupling constant η. The coupling η must obey an inhomogeneous renormalization group equation, but otherwise it is an arbitrary, free parameter. All the counter terms obey renormalization group equations which determine the complete structure of these quantities in terms of the residues of their simple poles in n − 4. The coefficient functions of the counter terms determine the construction of φ2 and φ4 in terms of renormalized composite operators 1, [φ2], and [φ4]. Two of the counter terms vanish in conformally flat space-time. The others may be computed from the theory in purely flat space-time. They are determined, in a rather intricate fashion, by the additive renormalizations for two-point functions of [φ2] and [φ4] in Minkowski space-time. In particular, using this method, we compute the leading divergence of the R2 interaction which is of fifth order in the coupling constant λ.

Original languageEnglish (US)
Pages (from-to)215-248
Number of pages34
JournalAnnals of Physics
Volume130
Issue number1
DOIs
StatePublished - Jan 1 1980

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Dimensional renormalization of scalar field theory in curved space-time'. Together they form a unique fingerprint.

Cite this