Dimensions of reductive automorphism groups

Research output: Contribution to journalArticle

Abstract

Let G be a reductive algebraic group acting regularly and effectively on an algebraic variety M. We obtain upper bounds for dim(G) in terms of dim(M). In particular, we improve results of Carayol.

Original languageEnglish (US)
Pages (from-to)163-172
Number of pages10
JournalGeometriae Dedicata
Volume39
Issue number2
DOIs
StatePublished - Aug 1991

Fingerprint

Reductive Group
Algebraic Variety
Algebraic Groups
Automorphism Group
Upper bound

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

Cite this

@article{976efc44478a4852b04e9fa46cc9251f,
title = "Dimensions of reductive automorphism groups",
abstract = "Let G be a reductive algebraic group acting regularly and effectively on an algebraic variety M. We obtain upper bounds for dim(G) in terms of dim(M). In particular, we improve results of Carayol.",
author = "Zarkhin, {Yuriy G.}",
year = "1991",
month = "8",
doi = "10.1007/BF00182292",
language = "English (US)",
volume = "39",
pages = "163--172",
journal = "Geometriae Dedicata",
issn = "0046-5755",
publisher = "Springer Netherlands",
number = "2",

}

Dimensions of reductive automorphism groups. / Zarkhin, Yuriy G.

In: Geometriae Dedicata, Vol. 39, No. 2, 08.1991, p. 163-172.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Dimensions of reductive automorphism groups

AU - Zarkhin, Yuriy G.

PY - 1991/8

Y1 - 1991/8

N2 - Let G be a reductive algebraic group acting regularly and effectively on an algebraic variety M. We obtain upper bounds for dim(G) in terms of dim(M). In particular, we improve results of Carayol.

AB - Let G be a reductive algebraic group acting regularly and effectively on an algebraic variety M. We obtain upper bounds for dim(G) in terms of dim(M). In particular, we improve results of Carayol.

UR - http://www.scopus.com/inward/record.url?scp=34249918662&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34249918662&partnerID=8YFLogxK

U2 - 10.1007/BF00182292

DO - 10.1007/BF00182292

M3 - Article

VL - 39

SP - 163

EP - 172

JO - Geometriae Dedicata

JF - Geometriae Dedicata

SN - 0046-5755

IS - 2

ER -