Diophantine approximation on planar curves: The convergence theory

R. C. Vaughan, S. Velani

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

The convergence theory for the set of simultaneously ψ-approximable points lying on a planar curve is established. Our results complement the divergence theory developed in [1] and thereby completes the general metric theory for planar curves.

Original languageEnglish (US)
Pages (from-to)103-124
Number of pages22
JournalInventiones Mathematicae
Volume166
Issue number1
DOIs
StatePublished - Oct 1 2006

Fingerprint

Planar Curves
Diophantine Approximation
Convergence Theory
Divergence
Complement
Metric

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{d55e1ce833e3426689d567b9e3219b7e,
title = "Diophantine approximation on planar curves: The convergence theory",
abstract = "The convergence theory for the set of simultaneously ψ-approximable points lying on a planar curve is established. Our results complement the divergence theory developed in [1] and thereby completes the general metric theory for planar curves.",
author = "Vaughan, {R. C.} and S. Velani",
year = "2006",
month = "10",
day = "1",
doi = "10.1007/s00222-006-0509-9",
language = "English (US)",
volume = "166",
pages = "103--124",
journal = "Inventiones Mathematicae",
issn = "0020-9910",
publisher = "Springer New York",
number = "1",

}

Diophantine approximation on planar curves : The convergence theory. / Vaughan, R. C.; Velani, S.

In: Inventiones Mathematicae, Vol. 166, No. 1, 01.10.2006, p. 103-124.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Diophantine approximation on planar curves

T2 - The convergence theory

AU - Vaughan, R. C.

AU - Velani, S.

PY - 2006/10/1

Y1 - 2006/10/1

N2 - The convergence theory for the set of simultaneously ψ-approximable points lying on a planar curve is established. Our results complement the divergence theory developed in [1] and thereby completes the general metric theory for planar curves.

AB - The convergence theory for the set of simultaneously ψ-approximable points lying on a planar curve is established. Our results complement the divergence theory developed in [1] and thereby completes the general metric theory for planar curves.

UR - http://www.scopus.com/inward/record.url?scp=33748057521&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33748057521&partnerID=8YFLogxK

U2 - 10.1007/s00222-006-0509-9

DO - 10.1007/s00222-006-0509-9

M3 - Article

AN - SCOPUS:33748057521

VL - 166

SP - 103

EP - 124

JO - Inventiones Mathematicae

JF - Inventiones Mathematicae

SN - 0020-9910

IS - 1

ER -