Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme

Yang Zhang, Xuling Zhu, Andrew T. Torelli, Michael Lee, Boris Dzikovski, Rachel M. Koralewski, Eileen Wang, Jack Freed, Carsten Krebs, Steven E. Ealick, Hening Lin

Research output: Contribution to journalArticlepeer-review

130 Scopus citations

Abstract

Archaeal and eukaryotic translation elongation factor 2 contain a unique post-translationally modified histidine residue called diphthamide, which is the target of diphtheria toxin. The biosynthesis of diphthamide was proposed to involve three steps, with the first being the formation of a C-C bond between the histidine residue and the 3-amino-3-carboxypropyl group of S-adenosyl-l-methionine (SAM). However, further details of the biosynthesis remain unknown. Here we present structural and biochemical evidence showing that the first step of diphthamide biosynthesis in the archaeon Pyrococcus horikoshii uses a novel iron-sulphur-cluster enzyme, Dph2. Dph2 is a homodimer and each of its monomers can bind a 4Fe-4S cluster. Biochemical data suggest that unlike the enzymes in the radical SAM superfamily, Dph2 does not form the canonical 5′-deoxyadenosyl radical. Instead, it breaks the C γ,Met-S bond of SAM and generates a 3-amino-3-carboxypropyl radical. Our results suggest that P. horikoshii Dph2 represents a previously unknown, SAM-dependent, 4Fe-4S-containing enzyme that catalyses unprecedented chemistry.

Original languageEnglish (US)
Pages (from-to)891-896
Number of pages6
JournalNature
Volume465
Issue number7300
DOIs
StatePublished - Jun 17 2010

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme'. Together they form a unique fingerprint.

Cite this