Abstract
Core-shell structured Ag/SiO2 nanocomposite has been synthesized by a cyclohexane/Igepal/water reverse micelle system. The spherical nanocomposite particles were washed and concentrated with high performance liquid chromatography (HPLC) to remove the surfactant added during synthesis. Spherical SiO2 micrometer-scale particles were packed in the HPLC column as a stationary phase for the washing and dispersing of Ag/SiO 2 nanocomposite particles. Surface modification of Ag/SiO2 nanocomposite particles and SiO2 microspheres with silane coupling agent enhanced the surface charge of the particles and improved the efficiency of washing with HPLC. Well-dispersed Ag/SiO2 stable suspensions were successfully attained in ethanol/ water mixed solvents after HPLC washing. The state of dispersion for the Ag/SiO2 nanocomposite suspension was systematically assessed using dynamic light scattering (DLS) and transmission electron microscope (TEM) and spin coat/atomic force microscope (AFM) analyses. The mechanism of the enabling HPLC washing protocol for SiO2-based nanoparticles is discussed.
Original language | English (US) |
---|---|
Pages (from-to) | 4679-4685 |
Number of pages | 7 |
Journal | Journal of Physical Chemistry B |
Volume | 110 |
Issue number | 10 |
DOIs | |
State | Published - Mar 16 2006 |
All Science Journal Classification (ASJC) codes
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films
- Materials Chemistry