Dispersive optical-model and coupled-channels descriptions of neutron scattering from [Formula Presented] and [Formula Presented] up to [Formula Presented]

M. M. Nagadi, C. R. Howell, W. Tornow, Gary Weisel, M. A. Al-Ohali, R. T. Braun, H. R. Setze, Zemin Chen, R. L. Walter, J. P. Delaroche, P. Romain

Research output: Contribution to journalArticle

Abstract

Differential cross sections [Formula Presented] and analyzing powers [Formula Presented] have been measured for neutron scattering from [Formula Presented] and [Formula Presented] at [Formula Presented] at the Triangle Universities Nuclear Laboratory using standard time-of-flight techniques. In addition, [Formula Presented] was measured for [Formula Presented] at 10, 12, 14, 17, and [Formula Presented]. Two large databases covering the energy range from 0.1 to [Formula Presented] were formed for these nuclei from this new data and previously published data, including that for the total cross section [Formula Presented]. These sets of data were analyzed using spherical dispersive optical-model (DOM) potentials, as well as coupled-channels model (CCM) potentials. The [Formula Presented] DOM gives good agreement with the [Formula Presented] data, except in the region of the first minimum. It also gives a reasonable description of our [Formula Presented] measurement. The [Formula Presented] DOM gives good agreement with the data, except for [Formula Presented] at backward angles below [Formula Presented] and for [Formula Presented], for which there is up to [Formula Presented] disagreement in the [Formula Presented] range. Compared to the DOM, the [Formula Presented] CCM calculations give improved agreement with the [Formula Presented] data, especially at the first minimum. The [Formula Presented] calculations agree with the data to within about [Formula Presented] above [Formula Presented]. The three-level CCM calculations for [Formula Presented] give excellent agreement with the entire database.

Original languageEnglish (US)
Number of pages1
JournalPhysical Review C - Nuclear Physics
Volume68
Issue number4
DOIs
Publication statusPublished - Jan 1 2003

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Cite this