Displacement and blocking force performance of piezoelectric T-beam actuators

Hareesh K.R. Kommepalli, Kiron Mateti, Christopher D. Rahn, Srinivas A. Tadigadapa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

In this paper, we present the experimental validation of the detailed models developed for the flexural motion of piezoelectric T-beam actuators. With a T-shaped cross-section, and bottom and top flange and web electrodes, a cantilevered beam can bend in both in-plane and out-of-plane directions upon actuation. Analytical models predict the tip displacement and blocking force in both directions. Mechanical dicing and flange electrode deposition was used to fabricate six meso-scale T-beam prototypes. The T-beams were experimentally tested for in-plane and out-of-plane displacements, and out-of-plane blocking force. The analytical models closely predict the T-beam displacement and blocking force performance. A nondimensional analytical model predict that all T-beam designs for both in-plane and outof- plane actuation, regardless of scale, have nondimensional displacement and blocking force equal to nondimensional voltage. The results from experiments are favorably compared with this theoretical prediction.

Original languageEnglish (US)
Title of host publicationASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
Pages841-850
Number of pages10
DOIs
StatePublished - Dec 1 2010
EventASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010 - Montreal, QC, Canada
Duration: Aug 15 2010Aug 18 2010

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume4

Other

OtherASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
CountryCanada
CityMontreal, QC
Period8/15/108/18/10

All Science Journal Classification (ASJC) codes

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Displacement and blocking force performance of piezoelectric T-beam actuators'. Together they form a unique fingerprint.

Cite this