Disruption behavior of aggregates in a rotating/oscillating cylindrical tank and implications for particle transport in the ocean

Yixuan Song, Matthew J. Rau

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Particle size and settling speed determine the rate of particulate mass transfer from the ocean surface to the sea bed. Turbulent shear in the ocean can act on large, faster-settling flocculated particles to break them into slower-settling primary particles or sub-aggregates. However, it is difficult to understand the disruption behavior of aggregates and their response to varying shear forces due to the complex ocean environment. A study was conducted to simulate the disruption behavior of marine aggregates in the mixed layer of the ocean. The breakup process was investigated by aggregating and disrupting flocs of bentonite clay particles in a rotating and oscillating cylindrical tank 10 cm in diameter filled with salt water. This laboratory tank, which operated based on an extension of Stokes’ second problem inside a cylinder, created laminar oscillating flow superimposed on a constant rotation. This motion allowed the bentonite particles to aggregate near the center of the tank but also exposed large aggregates to high shear forces near the wall. A high-speed camera system was used, along with particle tracking measurements and image processing techniques, to capture the breakup of the large particle aggregates and locate their radial position. The breakup response of large aggregates and the sizes of their daughter particles after breakup were quantified using the facility. The disruption strength of the aggregated particles is presented and discussed relative to their exposure to varying amounts of laminar shear.

Original languageEnglish (US)
Title of host publicationFluid Mechanics; Multiphase Flows
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791883723
DOIs
StatePublished - 2020
EventASME 2020 Fluids Engineering Division Summer Meeting, FEDSM 2020, collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels - Virtual, Online
Duration: Jul 13 2020Jul 15 2020

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Volume2
ISSN (Print)0888-8116

Conference

ConferenceASME 2020 Fluids Engineering Division Summer Meeting, FEDSM 2020, collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels
CityVirtual, Online
Period7/13/207/15/20

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Disruption behavior of aggregates in a rotating/oscillating cylindrical tank and implications for particle transport in the ocean'. Together they form a unique fingerprint.

Cite this