DNA Polymerase ν Rapidly Bypasses O6-Methyl-dG but Not O6-[4-(3-Pyridyl)-4-oxobutyl-dG and O2-Alkyl-dTs

A. S.Prakasha Gowda, Thomas Spratt

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent tobacco carcinogen that forms mutagenic DNA adducts including O6-methyl-2′-deoxyguanosine (O6-Me-dG), O6-[4-(3-pyridyl)-4-oxobut-1-yl]-dG (O6-POB-dG), O2-methylthymidine (O2-Me-dT), and O2-POB-dT. We evaluated the ability of human DNA polymerase ν to bypass this damage to evaluate the structural constraints on substrates for pol ν and to evaluate if there is kinetic evidence suggesting the in vivo activity of pol ν on tobacco-induced DNA damage. Presteady-state kinetic analysis has indicated that O6-Me-dG is a good substrate for pol ν, while O6-POB-dG and the O2-alkyl-dT adducts are poor substrates for pol ν. The reactivity with O6-Me-dG is high with a preference for dCTP > dGTP > dATP > dTTP. The catalytic activity of pol ν toward O6-Me-dG is high and can potentially be involved in its bypass in vivo. In contrast, pol ν is unlikely to bypass O6-POB-dG or the O2-alkyl-dTs in vivo.

Original languageEnglish (US)
Pages (from-to)1894-1900
Number of pages7
JournalChemical Research in Toxicology
Volume29
Issue number11
DOIs
StatePublished - Nov 21 2016

Fingerprint

Deoxyguanosine
DNA-Directed DNA Polymerase
Tobacco
Substrates
Kinetics
DNA Adducts
Carcinogens
DNA Damage
Catalyst activity
DNA

All Science Journal Classification (ASJC) codes

  • Toxicology

Cite this

@article{91e0b601cdaf408399c34579ee59e7d4,
title = "DNA Polymerase ν Rapidly Bypasses O6-Methyl-dG but Not O6-[4-(3-Pyridyl)-4-oxobutyl-dG and O2-Alkyl-dTs",
abstract = "4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent tobacco carcinogen that forms mutagenic DNA adducts including O6-methyl-2′-deoxyguanosine (O6-Me-dG), O6-[4-(3-pyridyl)-4-oxobut-1-yl]-dG (O6-POB-dG), O2-methylthymidine (O2-Me-dT), and O2-POB-dT. We evaluated the ability of human DNA polymerase ν to bypass this damage to evaluate the structural constraints on substrates for pol ν and to evaluate if there is kinetic evidence suggesting the in vivo activity of pol ν on tobacco-induced DNA damage. Presteady-state kinetic analysis has indicated that O6-Me-dG is a good substrate for pol ν, while O6-POB-dG and the O2-alkyl-dT adducts are poor substrates for pol ν. The reactivity with O6-Me-dG is high with a preference for dCTP > dGTP > dATP > dTTP. The catalytic activity of pol ν toward O6-Me-dG is high and can potentially be involved in its bypass in vivo. In contrast, pol ν is unlikely to bypass O6-POB-dG or the O2-alkyl-dTs in vivo.",
author = "Gowda, {A. S.Prakasha} and Thomas Spratt",
year = "2016",
month = "11",
day = "21",
doi = "10.1021/acs.chemrestox.6b00318",
language = "English (US)",
volume = "29",
pages = "1894--1900",
journal = "Chemical Research in Toxicology",
issn = "0893-228X",
publisher = "American Chemical Society",
number = "11",

}

DNA Polymerase ν Rapidly Bypasses O6-Methyl-dG but Not O6-[4-(3-Pyridyl)-4-oxobutyl-dG and O2-Alkyl-dTs. / Gowda, A. S.Prakasha; Spratt, Thomas.

In: Chemical Research in Toxicology, Vol. 29, No. 11, 21.11.2016, p. 1894-1900.

Research output: Contribution to journalArticle

TY - JOUR

T1 - DNA Polymerase ν Rapidly Bypasses O6-Methyl-dG but Not O6-[4-(3-Pyridyl)-4-oxobutyl-dG and O2-Alkyl-dTs

AU - Gowda, A. S.Prakasha

AU - Spratt, Thomas

PY - 2016/11/21

Y1 - 2016/11/21

N2 - 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent tobacco carcinogen that forms mutagenic DNA adducts including O6-methyl-2′-deoxyguanosine (O6-Me-dG), O6-[4-(3-pyridyl)-4-oxobut-1-yl]-dG (O6-POB-dG), O2-methylthymidine (O2-Me-dT), and O2-POB-dT. We evaluated the ability of human DNA polymerase ν to bypass this damage to evaluate the structural constraints on substrates for pol ν and to evaluate if there is kinetic evidence suggesting the in vivo activity of pol ν on tobacco-induced DNA damage. Presteady-state kinetic analysis has indicated that O6-Me-dG is a good substrate for pol ν, while O6-POB-dG and the O2-alkyl-dT adducts are poor substrates for pol ν. The reactivity with O6-Me-dG is high with a preference for dCTP > dGTP > dATP > dTTP. The catalytic activity of pol ν toward O6-Me-dG is high and can potentially be involved in its bypass in vivo. In contrast, pol ν is unlikely to bypass O6-POB-dG or the O2-alkyl-dTs in vivo.

AB - 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent tobacco carcinogen that forms mutagenic DNA adducts including O6-methyl-2′-deoxyguanosine (O6-Me-dG), O6-[4-(3-pyridyl)-4-oxobut-1-yl]-dG (O6-POB-dG), O2-methylthymidine (O2-Me-dT), and O2-POB-dT. We evaluated the ability of human DNA polymerase ν to bypass this damage to evaluate the structural constraints on substrates for pol ν and to evaluate if there is kinetic evidence suggesting the in vivo activity of pol ν on tobacco-induced DNA damage. Presteady-state kinetic analysis has indicated that O6-Me-dG is a good substrate for pol ν, while O6-POB-dG and the O2-alkyl-dT adducts are poor substrates for pol ν. The reactivity with O6-Me-dG is high with a preference for dCTP > dGTP > dATP > dTTP. The catalytic activity of pol ν toward O6-Me-dG is high and can potentially be involved in its bypass in vivo. In contrast, pol ν is unlikely to bypass O6-POB-dG or the O2-alkyl-dTs in vivo.

UR - http://www.scopus.com/inward/record.url?scp=85017511017&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85017511017&partnerID=8YFLogxK

U2 - 10.1021/acs.chemrestox.6b00318

DO - 10.1021/acs.chemrestox.6b00318

M3 - Article

C2 - 27741574

AN - SCOPUS:85017511017

VL - 29

SP - 1894

EP - 1900

JO - Chemical Research in Toxicology

JF - Chemical Research in Toxicology

SN - 0893-228X

IS - 11

ER -