Dose comparison of ultrasonic transdermal insulin delivery to subcutaneous insulin injection

Eun Joo Park, Jeffery Dodds, Nadine Barrie Smith

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

Prior studies have demonstrated the effectiveness of noninvasive transdermal insulin delivery using a cymbal transducer array. In this study the physiologic response to ultrasound mediated transdermal insulin delivery is compared to that of subcutaneously administered insulin. Anesthetized rats (350-550 g) were divided into four groups of four animals; one group representing ultrasound mediated insulin delivery and three representing subcutaneously administered insulin (0.15, 0.20, and 0.25 U/kg). The cymbal array was operated for 60 minutes at 20 kHz with 100 mW/cm2 spatial-peak temporal-peak intensity and a 20% duty cycle. The blood glucose level was determined at the beginning of the experiment and, following insulin administration, every 15 minutes for 90 minutes for both the ultrasound and injection groups. The change in blood glucose from baseline was compared between groups. When administered by subcutaneous injection at insulin doses of 0.15 and 0.20 U/kg, there was little change in the blood glucose levels over the 90 minute experiment. Following subcutaneous administration of insulin at a dose of 0.25 U/kg, blood glucose decreased by 190 ± 96 mg/dl (mean ± SD) at 90 minutes. The change in blood glucose following ultrasound mediated insulin delivery was -262±40 mg/dl at 90 minutes. As expected, the magnitude of change in blood glucose between the three injection groups was dependant on the dose of insulin administered. The change in blood glucose in the ultrasound group was greater than that observed in the injection groups suggesting that a higher effective dose of insulin was delivered.

Original languageEnglish (US)
Pages (from-to)335-341
Number of pages7
JournalInternational Journal of Nanomedicine
Volume3
Issue number3
StatePublished - Nov 4 2008

Fingerprint

Insulin
Subcutaneous Injections
Ultrasonics
Glucose
Blood Glucose
Blood
Injections
Transducers
Rats
Animals
Experiments

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Pharmaceutical Science
  • Drug Discovery
  • Organic Chemistry

Cite this

@article{fde2e2633eeb4ef58dc68603577268ad,
title = "Dose comparison of ultrasonic transdermal insulin delivery to subcutaneous insulin injection",
abstract = "Prior studies have demonstrated the effectiveness of noninvasive transdermal insulin delivery using a cymbal transducer array. In this study the physiologic response to ultrasound mediated transdermal insulin delivery is compared to that of subcutaneously administered insulin. Anesthetized rats (350-550 g) were divided into four groups of four animals; one group representing ultrasound mediated insulin delivery and three representing subcutaneously administered insulin (0.15, 0.20, and 0.25 U/kg). The cymbal array was operated for 60 minutes at 20 kHz with 100 mW/cm2 spatial-peak temporal-peak intensity and a 20{\%} duty cycle. The blood glucose level was determined at the beginning of the experiment and, following insulin administration, every 15 minutes for 90 minutes for both the ultrasound and injection groups. The change in blood glucose from baseline was compared between groups. When administered by subcutaneous injection at insulin doses of 0.15 and 0.20 U/kg, there was little change in the blood glucose levels over the 90 minute experiment. Following subcutaneous administration of insulin at a dose of 0.25 U/kg, blood glucose decreased by 190 ± 96 mg/dl (mean ± SD) at 90 minutes. The change in blood glucose following ultrasound mediated insulin delivery was -262±40 mg/dl at 90 minutes. As expected, the magnitude of change in blood glucose between the three injection groups was dependant on the dose of insulin administered. The change in blood glucose in the ultrasound group was greater than that observed in the injection groups suggesting that a higher effective dose of insulin was delivered.",
author = "Park, {Eun Joo} and Jeffery Dodds and Smith, {Nadine Barrie}",
year = "2008",
month = "11",
day = "4",
language = "English (US)",
volume = "3",
pages = "335--341",
journal = "International Journal of Nanomedicine",
issn = "1176-9114",
publisher = "Dove Medical Press Ltd.",
number = "3",

}

Dose comparison of ultrasonic transdermal insulin delivery to subcutaneous insulin injection. / Park, Eun Joo; Dodds, Jeffery; Smith, Nadine Barrie.

In: International Journal of Nanomedicine, Vol. 3, No. 3, 04.11.2008, p. 335-341.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Dose comparison of ultrasonic transdermal insulin delivery to subcutaneous insulin injection

AU - Park, Eun Joo

AU - Dodds, Jeffery

AU - Smith, Nadine Barrie

PY - 2008/11/4

Y1 - 2008/11/4

N2 - Prior studies have demonstrated the effectiveness of noninvasive transdermal insulin delivery using a cymbal transducer array. In this study the physiologic response to ultrasound mediated transdermal insulin delivery is compared to that of subcutaneously administered insulin. Anesthetized rats (350-550 g) were divided into four groups of four animals; one group representing ultrasound mediated insulin delivery and three representing subcutaneously administered insulin (0.15, 0.20, and 0.25 U/kg). The cymbal array was operated for 60 minutes at 20 kHz with 100 mW/cm2 spatial-peak temporal-peak intensity and a 20% duty cycle. The blood glucose level was determined at the beginning of the experiment and, following insulin administration, every 15 minutes for 90 minutes for both the ultrasound and injection groups. The change in blood glucose from baseline was compared between groups. When administered by subcutaneous injection at insulin doses of 0.15 and 0.20 U/kg, there was little change in the blood glucose levels over the 90 minute experiment. Following subcutaneous administration of insulin at a dose of 0.25 U/kg, blood glucose decreased by 190 ± 96 mg/dl (mean ± SD) at 90 minutes. The change in blood glucose following ultrasound mediated insulin delivery was -262±40 mg/dl at 90 minutes. As expected, the magnitude of change in blood glucose between the three injection groups was dependant on the dose of insulin administered. The change in blood glucose in the ultrasound group was greater than that observed in the injection groups suggesting that a higher effective dose of insulin was delivered.

AB - Prior studies have demonstrated the effectiveness of noninvasive transdermal insulin delivery using a cymbal transducer array. In this study the physiologic response to ultrasound mediated transdermal insulin delivery is compared to that of subcutaneously administered insulin. Anesthetized rats (350-550 g) were divided into four groups of four animals; one group representing ultrasound mediated insulin delivery and three representing subcutaneously administered insulin (0.15, 0.20, and 0.25 U/kg). The cymbal array was operated for 60 minutes at 20 kHz with 100 mW/cm2 spatial-peak temporal-peak intensity and a 20% duty cycle. The blood glucose level was determined at the beginning of the experiment and, following insulin administration, every 15 minutes for 90 minutes for both the ultrasound and injection groups. The change in blood glucose from baseline was compared between groups. When administered by subcutaneous injection at insulin doses of 0.15 and 0.20 U/kg, there was little change in the blood glucose levels over the 90 minute experiment. Following subcutaneous administration of insulin at a dose of 0.25 U/kg, blood glucose decreased by 190 ± 96 mg/dl (mean ± SD) at 90 minutes. The change in blood glucose following ultrasound mediated insulin delivery was -262±40 mg/dl at 90 minutes. As expected, the magnitude of change in blood glucose between the three injection groups was dependant on the dose of insulin administered. The change in blood glucose in the ultrasound group was greater than that observed in the injection groups suggesting that a higher effective dose of insulin was delivered.

UR - http://www.scopus.com/inward/record.url?scp=69749087891&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=69749087891&partnerID=8YFLogxK

M3 - Article

C2 - 18990942

AN - SCOPUS:69749087891

VL - 3

SP - 335

EP - 341

JO - International Journal of Nanomedicine

JF - International Journal of Nanomedicine

SN - 1176-9114

IS - 3

ER -