TY - JOUR
T1 - Dyads, triads, and tetrads
T2 - a multivariate simulation approach to uncovering network motifs in social graphs
AU - Felmlee, Diane
AU - McMillan, Cassie
AU - Whitaker, Roger
N1 - Funding Information:
One portion of the study uses Add Health data. The Add Health data collection is directed by Robert A. Hummer and funded by the National Institute on Aging cooperative agreements U01 AG071448 (Hummer) and U01 AG071450 (Aiello and Hummer) at the University of North Carolina at Chapel Hill. Waves I-V data are from the Add Health Program Project, grant P01 HD31921 (Harris) from Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), with cooperative funding from 23 other federal agencies and foundations. Add Health was designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill.
Funding Information:
This research received assistance from the Penn State Population Research Institute, which is supported by an infrastructure grant by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (P2CHD041025) under the of the National Institutes of Health under award number 2P2CHD041025. This research was sponsored in part by the DAIS-ITA, the U.S. Army Research Laboratory, and the U.K. Ministry of Defense under Agreement Number W911NF-16-3-0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of Defense or the U.K. Government. Partial support was provided by Pennsylvania State University and the National Science Foundation under an IGERT award # DGE-1144860, Big Data Social Science.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Motifs represent local subgraphs that are overrepresented in networks. Several disciplines document multiple instances in which motifs appear in graphs and provide insight into the structure and processes of these networks. In the current paper, we focus on social networks and examine the prevalence of dyad, triad, and symmetric tetrad motifs among 24 networks that represent six types of social interactions: friendship, legislative co-sponsorship, Twitter messages, advice seeking, email communication, and terrorist collusion. Given that the correct control distribution for detecting motifs is a matter of continuous debate, we propose a novel approach that compares the local patterns of observed networks to random graphs simulated from exponential random graph models. Our proposed technique can produce conditional distributions that control for multiple, lower-level structural patterns simultaneously. We find evidence for five motifs using our approach, including the reciprocated dyad, three triads, and one symmetric tetrad. Results highlight the importance of mutuality, hierarchy, and clustering across multiple social interactions, and provide evidence of “structural signatures” within different genres of graph. Similarities also emerge between our findings and those in other disciplines, such as the preponderance of transitive triads.
AB - Motifs represent local subgraphs that are overrepresented in networks. Several disciplines document multiple instances in which motifs appear in graphs and provide insight into the structure and processes of these networks. In the current paper, we focus on social networks and examine the prevalence of dyad, triad, and symmetric tetrad motifs among 24 networks that represent six types of social interactions: friendship, legislative co-sponsorship, Twitter messages, advice seeking, email communication, and terrorist collusion. Given that the correct control distribution for detecting motifs is a matter of continuous debate, we propose a novel approach that compares the local patterns of observed networks to random graphs simulated from exponential random graph models. Our proposed technique can produce conditional distributions that control for multiple, lower-level structural patterns simultaneously. We find evidence for five motifs using our approach, including the reciprocated dyad, three triads, and one symmetric tetrad. Results highlight the importance of mutuality, hierarchy, and clustering across multiple social interactions, and provide evidence of “structural signatures” within different genres of graph. Similarities also emerge between our findings and those in other disciplines, such as the preponderance of transitive triads.
UR - http://www.scopus.com/inward/record.url?scp=85113611527&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85113611527&partnerID=8YFLogxK
U2 - 10.1007/s41109-021-00403-5
DO - 10.1007/s41109-021-00403-5
M3 - Article
AN - SCOPUS:85113611527
SN - 2364-8228
VL - 6
JO - Applied Network Science
JF - Applied Network Science
IS - 1
M1 - 63
ER -